首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.  相似文献   

7.
8.
9.
To facilitate the biochemical characterization of chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae, we have developed a system to assemble nucleosomal arrays on immobilized templates using recombinant yeast core histones. This system enabled us to analyze the interaction of Isw2 ATP-dependent chromatin remodeling complex with nucleosomal arrays. We found that Isw2 complex interacts efficiently with both naked DNA and nucleosomal arrays in an ATP-independent manner, suggesting that ATP is required at steps subsequent to this physical interaction. We identified the second subunit of Isw2 complex, encoded by open reading frame YGL 133w (herein named ITC1), and found that both subunits of the complex, Isw2p and Itc1p, are essential for efficient interaction with DNA and nucleosomal arrays. Both subunits are also required for nucleosome-stimulated ATPase activity and chromatin remodeling activity of the complex. Finally, we found that ITC1 is essential for function of Isw2 complex in vivo, since isw2 and itc1 deletion mutants exhibit virtually identical phenotypes. These results demonstrate the utility of our in vitro system in studying interactions between chromatin-associated proteins and nucleosomal arrays.  相似文献   

10.
Fazzio TG  Tsukiyama T 《Molecular cell》2003,12(5):1333-1340
Members of the ISWI family of chromatin remodeling factors exhibit ATP-dependent nucleosome sliding, loading, and spacing activities in vitro. However, it is unclear which of these activities are utilized by ISWI complexes to remodel chromatin in vivo. We therefore sought to identify the mechanisms of chromatin remodeling by Saccharomyces cerevisiae Isw2 complex at its known sites of action in vivo. To address this question, we developed a method of identifying intermediates of the Isw2-dependent chromatin remodeling reaction as it proceeded. We show that Isw2 complex catalyzes nucleosome sliding at two different classes of target genes in vivo, in each case sliding nucleosomes closer to the promoter regions. In contrast to its biochemical activities in vitro, nucleosome sliding by Isw2 complex in vivo is unidirectional and localized to a few nucleosomes at each site, suggesting that Isw2 activity is constrained by cellular factors.  相似文献   

11.
12.
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p-mediated repression and Ume6p-mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2-HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild-type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1, 2, 3) of the ume6Delta mutation that overexpress the INO2-HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6Delta mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Delta and rpd3Delta mutants on INO2-cat expression. Surprisingly, the sin3Delta allele overexpressed INO2-cat, whereas the rpd3Delta mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1-cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.  相似文献   

13.
14.
A role for mammalian Sin3 in permanent gene silencing   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
Three families of prolyl isomerases have been identified: cyclophilins, FK506-binding proteins (FKBPs) and parvulins. All 12 cyclophilins and FKBPs are dispensable for growth in yeast, whereas the one parvulin homolog, Ess1, is essential. We report here that cyclophilin A becomes essential when Ess1 function is compromised. We also show that overexpression of cyclophilin A suppresses ess1 conditional and null mutations, and that cyclophilin A enzymatic activity is required for suppression. These results indicate that cyclophilin A and Ess1 function in parallel pathways and act on common targets by a mechanism that requires prolyl isomerization. Using genetic and biochemical approaches, we found that one of these targets is the Sin3-Rpd3 histone deacetylase complex, and that cyclophilin A increases and Ess1 decreases disruption of gene silencing by this complex. We show that conditions that favor acetylation over deacetylation suppress ess1 mutations. Our findings support a model in which Ess1 and cyclophilin A modulate the activity of the Sin3-Rpd3 complex, and excess histone deacetylation causes mitotic arrest in ess1 mutants.  相似文献   

19.
20.
K F Cooper  M J Mallory  J B Smith    R Strich 《The EMBO journal》1997,16(15):4665-4675
The ume3-1 allele was identified as a mutation that allowed the aberrant expression of several meiotic genes (e.g. SPO11, SPO13) during mitotic cell division in Saccharomyces cerevisiae. Here we report that UME3 is also required for the full repression of the HSP70 family member SSA1. UME3 encodes a non-essential C-type cyclin (Ume3p) whose levels do not vary through the mitotic cell cycle. However, Ume3p is destroyed during meiosis or when cultures are subjected to heat shock. Ume3p mutants resistant to degradation resulted in a 2-fold reduction in SPO13 mRNA levels during meiosis, indicating that the down-regulation of this cyclin is important for normal meiotic gene expression. Mutational analysis identified two regions (PEST-rich and RXXL) that mediate Ume3p degradation. A third destruction signal lies within the highly conserved cyclin box, a region that mediates cyclin-cyclin-dependent kinase (Cdk) interactions. However, the Cdk activated by Ume3p (Ume5p) is not required for the rapid destruction of this cyclin. Finally, Ume3p destruction was not affected in mutants defective for ubiquitin-dependent proteolysis. These results support a model in which Ume3p, when exposed to heat shock or sporulation conditions, is targeted for destruction to allow the expression of genes necessary for the cell to respond correctly to these environmental cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号