共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim TH Kim HJ Park JS Kim Y Kim P Lee HS 《Biochemical and biophysical research communications》2005,331(4):1542-1547
The sigH gene of Corynebacterium glutamicum encodes ECF sigma factor sigmaH. The gene apparently plays an important role in other stress responses as well as heat stress response. In this study, we found that deleting the sigH gene made C. glutamicum cells sensitive to the thiol-specific oxidant diamide. In the sigH mutant strain, the activity of thioredoxin reductase markedly decreased, suggesting that the trxB gene encoding thioredoxin reductase is probably under the control of sigmaH. The expression of sigH was stimulated in the stationary growth phase and modulated by diamide. In addition, the SigH protein was required for the expression of its own gene. These data indicate that the sigH gene of C. glutamicum stimulates and regulates its own expression in the stationary growth phase in response to environmental stimuli, and participates in the expression of other genes which are important for survival following heat and oxidative stress response. 相似文献
2.
Andreas Tauch Oliver Kirchner Lutz Wehmeier Jörn Kalinowski Alfred Pühler 《FEMS microbiology letters》1994,123(3):343-347
Abstract Efficient electroporation of Escherichia coli with plasmid DNA isolated from Corynebacterium glutamicum depends on the use of Mcr-deficient E. coli strains. The transformation frequency increased nearly 800-fold when the Mcr-deficient E. coli DH5αMCR was used instead of E. coli DH5α. We used E. coli strains with different mutations in the methyl-specific restriction systems to show that McrBC-deficiency is sufficient to generate this effect. The results imply that C. glutamicum DNA contains methylcytosine in specific sequences recognized by the E. coli McrBC system. 相似文献
3.
Kataoka M Hashimoto KI Yoshida M Nakamatsu T Horinouchi S Kawasaki H 《Letters in applied microbiology》2006,42(5):471-476
AIM: The ultimate aim is to elucidate the molecular mechanisms for glutamate overproduction by Corynebacterium glutamicum. METHODS AND RESULTS: Gene expression in response to the conditions inducing glutamate overproduction was investigated by using a DNA microarray technique. Most genes involved in the EMP pathway, the PPP, and the TCA cycle were downregulated, while five genes that were highly upregulated (NCgl0917, NCgl2944, NCgl2945, NCgl2946, and NCgl2975) were identified under all the three conditions for overproduction that are studied here. Gene products of NCgl2944, NCgl2945, and NCgl2946 were highly homologous to each other, did not resemble any other protein, and have remained uncharacterized thus far. The product of NCgl0917 showed a similarity to a few hypothetical and uncharacterized proteins. NCgl2975 was homologous to metal-binding proteins. CONCLUSIONS: The decrease in the activity of 2-oxoglutarate dehydrogenase complex, a key enzyme that is downregulated during glutamate overproduction, can be mainly attributed to the downregulation of odhA and sucB. Five highly upregulated genes were also identified. SIGNIFICANCE AND IMPACT OF THE STUDY: Although fermentative production of glutamate has been carried out for more than 45 years, information on the molecular mechanisms of glutamate overproduction is still limited. This study further elucidates these mechanisms. 相似文献
4.
Wendisch VF 《Journal of biotechnology》2003,104(1-3):273-285
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed. 相似文献
5.
谷氨酸棒杆菌中ldh基因编码乳酸脱氢酶,可催化丙酮酸转化生成乳酸.利用重叠延伸PCR的方法,获得中间缺失部分序列的dldh基因片段,将其与载体pk 18mobsacB连接,转化大肠杆菌感受态,筛选出阳性转化子后,转化谷氨酸棒杆菌ATCC 13032感受态细胞.分别在卡那霉素抗性平板及10%蔗糖平板上进行两次筛选,利用PCR方法鉴定,成功获得ldh基因缺失的谷氨酸棒杆菌突变株ATCC 13032-(4)ldh.应用荧光定量PCR检测,ATCC 13032-(z)ldh中的ldh基因在转录水平与野生型菌株ATCC 13032相比,相对表达量为O.ldh基因的敲除对菌株的生长造成了一定的影响. 相似文献
6.
The lmrB gene of Corynebacterium glutamicum, which confers specific resistance to lincosamides, such as lincomycin and clindamycin, was isolated. C. glutamicum cells, carrying the lmrB gene in a multicopy plasmid, showed increased resistance to lincomycin with a MIC of 230 microg/ml, which is a 9-fold increase compared to that of the wild type. The lmrB-disrupted mutant became sensitive to the compound. No difference in sensitivity to erythromycin, penicillin G, tetracycline, chloramphenicol, spectinomycin, nalidixic acid, gentamicin, streptomycin, ethidium bromide, and sodium dodecyl sulfate was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone abolished the lincomycin-resistance of lmrB-carrying cells. The putative protein product of the gene contained 14-transmembrane regions and showed high amino acid-sequence homology to the drug efflux pumps of other organisms. In addition, the putative protein contained a motif for major facilitators, suggesting a role in efflux-mediated resistance to lincomycin. 相似文献
7.
Barrett E Stanton C Zelder O Fitzgerald G Ross RP 《Applied and environmental microbiology》2004,70(5):2861-2866
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability. 相似文献
8.
《Bioscience, biotechnology, and biochemistry》2013,77(10):1806-1810
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence. 相似文献
9.
A glutamic acid producing microorganism (Corynebacterium glutamicum) is entrapped in a polyacrylamide gel. These immobilized microorganisms were used to produce glutamic acid in successive batches of fresh medium. Free microorganisms similarly used produced much less glutamic acid under similar conditions. 相似文献
10.
Marius Conrady Anja Lemoine Michael H. Limberg Marco Oldiges Peter Neubauer Stefan Junne 《Biotechnology progress》2019,35(3):e2804
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids. 相似文献
11.
Gene expression systems for lactic acid bacteria. 总被引:28,自引:0,他引:28
W M de Vos 《Current opinion in microbiology》1999,2(3):289-295
Considerable advances have been made in the genetics and molecular biology of lactic acid bacteria, including Lactococcus, Lactobacillus, Leuconostoc, Pediococcus and Streptococcus spp. These have resulted in the construction of constitutive gene expression cassettes, inducible gene expression systems, and specific protein targeting systems for these bacteria. These developments are important in the food industry where lactic acid bacteria can be exploited as food-grade cell factories. 相似文献
12.
Nitrile hydratases are important industrial catalysts to produce valuable amides. In this study, we describe a comprehensive and systematic approach to the development of an inducible expression system for enhanced nitrile hydratase expression in Corynebacterium glutamicum. Through promoter engineering, codon optimization and design of ribosome binding site sequences, the nitrile hydratase activity toward 3-cyanopyridine was improved from 0.33 U/mg DCW to 12.03 U/mg DCW in shake-flask culture. By introduction of the novel inducible mmp expression system, the nitrile hydratase activity was further elevated to 14.97 U/mg DCW. Finally, a high nitrile hydratase yield of 1432 U/mL was achieved in a fed-batch fermentation process and used for nicotinamide production. These results provide new insights for the development of heterologous protein expression systems in C. glutamicum. 相似文献
13.
The dynamic behavior of the metabolism of Corynebacterium glutamicum during L-glutamic acid fermentation, was evaluated by quantitative analysis of the evolution of intracellular metabolites and key enzyme concentrations. Glutamate production was induced by an increase of the temperature and a final concentration of 80 g/l was attained. During the production phase, various other compounds, notably lactate, trehalose, and DHA were secreted to the medium. Intracellular metabolites analysis showed important variations of glycolytic intermediates and NADH, NAD coenzymes levels throughout the production phase. Two phenomena occur during the production phase which potentially provoke a decrease in the glutamate yield: Both the intracellular concentrations of glycolytic intermediates and the NADH/NAD ratio increase significantly during the period in which the overall metabolic rates decline. This correlates with the decrease in glutamate yield due in part to the production of lactate and also to the period of the fermentation in which growth no longer occurred. 相似文献
14.
Haitani Y Awano N Yamazaki M Wada M Nakamori S Takagi H 《FEMS microbiology letters》2006,255(1):156-163
We report here the function of L-serine O-acetyltransferase (SAT) from the glutamic acid-producing bacterium Corynebacterium glutamicum. Based on the genome sequence of C. glutamicum and the NH(2)-terminal amino-acid sequence, the gene encoding SAT (cysE) was cloned and expressed in C. glutamicum. Deletion analysis of the 5'-noncoding region showed a putative -10 region ((-27)TTAAGT(-22) or (-26)TAAGTC(-21)) and a possible ribosome-binding site ((-12)AGA(-10)) just upstream from the start codon. We found that the SAT activity was sensitive to feedback inhibition by L-cysteine, and that SAT synthesis was repressed by L-methionine. Further, cysE-disrupted cells showed L-cysteine auxotrophy, indicating that C. glutamicum synthesizes L-cysteine from L-serine via O-acetyl-L-serine through the pathway involving SAT and O-acetyl-L-serine sulfhydrylase in the same manner as Escherichia coli. 相似文献
15.
Ikeda M Kamada N Takano Y Nakano T 《Bioscience, biotechnology, and biochemistry》1999,63(10):1806-1810
Transketolase is important in production of the aromatic amino acids in Corynebacterium glutamicum. The complete nucleotide sequence of the C. glutamicum transketolase gene has been identified. The DNA-derived protein sequence is highly similar to the transketolase of Mycobacterium tuberculosis, taxonomically related to C. glutamicum. The alignment of the N-terminus regions between both transketolases showed TTG to be the most probable start codon. Potential ribosomal binding and promoter regions were situated upstream from the TTG. The deduced amino acid sequence consists of 700 residues with a calculated molecular mass of 75 kDa, and contains all amino acid residues involved in cofactor and substrate binding in the well-characterized yeast transketolase sequence. 相似文献
16.
从大肠杆菌E.colik-12中通过PCR克隆出磷酸果糖激酶编码基因(pfkA),将其连到表达载体pCMVTNTTMvector。连接构建成重组质粒Ku-1,导入谷氨酸棒杆菌B4(已经诱变改造),并得到表达。酶活性测定表明Ku-1的pfkA基因在B44中得到表达(磷酸果糖激酶为128.6±0.86U/g蛋白)。解除磷酸果糖激酶对已经改造的谷氨酸的整个代谢途径的限制。同时,B44对糖转化率比B4(由出发菌株B1诱变而来)高10.64%,产酸率比B4高17.1%。 相似文献
17.
The gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. During the last 15 years, genetic engineering and amplification of genes have become fascinating methods for studying metabolic pathways in greater detail and for the construction of strains with the desired genotypes. In order to obtain a better understanding of the central metabolism and to quantify the in vivo fluxes in C. glutamicum, the [13C]-labelling technique was combined with metabolite balancing to achieve a unifying comprehensive pathway analysis. These methods can determine the flux distribution at the branch point between glycolysis and the pentose phosphate pathway. The in vivo fluxes in the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified glucose-6-phosphate and 6-phosphogluconate dehydrogenases determined in vitro were in full accordance with the fluxes measured by the [13C]-labelling technique. These data indicate that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH/NADP concentrations and the specific activity of glucose-6-phosphate dehydrogenase. The carbon flux via the oxidative pentose phosphate pathway correlated with the NADPH demand for L-lysine synthesis. Although it has generally been accepted that phosphoenolpyruvate carboxylase fulfills a main anaplerotic function in C. glutamicum, we recently detected that a biotin-dependent pyruvate carboxylase exists as a further anaplerotic enzyme in this bacterium. In addition to the activities of these two carboxylases three enzymes catalysing the decarboxylation of the C4 metabolites oxaloacetate or malate are also present in this bacterium. The individual flux rates at this complex anaplerotic node were investigated by using [13C]-labelled substrates. The results indicate that both carboxylation and decarboxylation occur simultaneously in C. glutamicum so that a high cyclic flux of oxaloacetate via phosphoenolpyruvate to pyruvate was found. Furthermore, we detected that in C. glutamicum two biosynthetic pathways exist for the synthesis of DL-diaminopimelate and L-lysine. As shown by NMR spectroscopy the relative use of both pathways in vivo is dependent on the ammonium concentration in the culture medium. Mutants defective in one pathway are still able to synthesise enough L-lysine for growth, but the L-lysine yields with overproducers were reduced. The luxury of having these two pathways gives C. glutamicum an increased flexibility in response to changing environmental conditions and is also related to the essential need for DL-diaminopimelate as a building block for the synthesis of the murein sacculus. 相似文献
18.
19.
20.
Hermann Sahm Lothar Eggeling Bernd Eikmanns Reinhard Krämer 《FEMS microbiology reviews》1995,16(2-3):243-252
The Gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of l-glutamate and l-lysine. In the last 10 years, genetic engineering and amplification of relevant structural genes have become fascinating methods for the construction of strains with desired genotypes. By cloning and expressing the various genes of the l-lysine pathway in C. glutamicum we could demonstrate that an increase of the flux of l-aspartate semialdehyde to l-lysine could be obtained in strains with increased dehydrodipicolinate synthase activity. By combined overexpression of deregulated aspartate kinase and dihydrodipicolinate synthase, the l-lysine secretion could be increased (10–20%). Recently we detected that in C. glutamicum two pathways exist for the synthesis of dl-diaminopimelate and l-lysine. Mutants defective in one pathway are still able to synthesize enough l-lysine for growth, but the l-lysine secretion is reduced to 50–70%. Using NMR spectroscopy, we could calculate how much of the l-lysine secreted into the medium is synthesized via each pathway. Amplification of the feedback inhibition-insensitive homoserine dehydrogenase and homoserine kinase in a high l-lysine overproducing strain enabled channelling of the carbon flow from the intermediate aspartate semialdehyde towards homoserine, resulting in a high accumulation of l-threonine. For a further flux from l-threonine to l-isoleucine the allosteric control of threonine dehydratase must be eliminated. In addition to all steps considered so far to be important for amino acid overproduction, the secretion into the culture medium also has to be noted. Recently it could be demonstrated that l-glutamate, l-lysine and l-isoleucine are not secreted via passive diffusion but via specific active carrier systems. Analysis of lysine-overproducing C. glutamicum strains indicates that this secretion carrier has a strong influence on the overproduction of this amino acid. Thus, for the construction of strong amino acid overproducing strains by using the gene cloning techniques, the overexpression of the genes for the export systems also seems necessary. 相似文献