首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RhoB is a low molecular weight GTPase that is both farnesylated (RhoB-F) and geranylgeranylated (RhoB-GG) in cells. Based on data from rodent cell models, it has been suggested that RhoB displays differential effects on cell transformation, according to the nature of its prenylation. To test directly this hypothesis, we generated GTPase-deficient RhoB mutants that are exclusively either farnesylated or geranylgeranylated. We show that in Ras-transformed murine NIH-3T3 cells, RhoB-F enhances, whereas RhoB-GG and RhoB (F/GG) suppresses anchorage-dependent and -independent cell growth as well as tumor growth in nude mice. We then demonstrate that Ras constitutive activation of the tumor survival pathways Akt and NF-kappa B are blocked by RhoB-GG, but not by RhoB-F, providing further support for the opposing role of RhoB-F and RhoB-GG in Ras malignant transformation in NIH-3T3 cells. In addition, both RhoB (F/GG) and RhoB-GG induce apoptosis in Ras-transformed NIH-3T3 cells whereas RhoB-F has no effect. Our data demonstrate that RhoB-F and RhoB-GG which differ only by a 5-carbon isoprene behave differently in rodent cells highlighting the important role of prenyl groups in protein function and emphasize the potency of RhoB to regulate negatively the oncogenic signal.  相似文献   

2.
Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  相似文献   

3.
ROCK I-mediated activation of NF-kappaB by RhoB   总被引:1,自引:0,他引:1  
RhoB is a short-lived protein whose expression is increased by a variety of extra-cellular stimuli including UV irradiation, epidermal growth factor (EGF) and transforming growth factor beta (TGF-beta). Whereas most Rho proteins are modified by the covalent attachment of a geranylgeranyl group, RhoB is unique in that it can exist in either a geranylgeranylated (RhoB-GG) or a farnesylated (RhoB-F) form. Although each form is proposed to have different cellular functions, the signaling events that underlie these differences are poorly understood. Here we show that RhoB can activate NF-kappaB signaling in multiple cell types. Whereas RhoB-F is a potent activator of NF-kappaB, much weaker activation is observed for RhoB-GG, RhoA, and RhoC. NF-kappaB activation by RhoB is not associated with increased nuclear translocation of RelA/p65, but rather, by modification of the RelA/p65 transactivation domain. Activation of NF-kappaB by RhoB is dependent upon ROCK I but not PRK I. Thus, ROCK I cooperates with RhoB to activate NF-kappaB, and suppression of ROCK I activity by genetic or pharmacological inhibitors blocks NF-kappaB activation. Suppression of RhoB activity by dominant-inhibitory mutants, or siRNA, blocks NF-kappaB activation by Bcr, and TSG101, but not by TNFalpha or oncogenic Ras. Collectively, these observations suggest the existence of an endosome-associated pathway for NF-kappaB activation that is preferentially regulated by the farnesylated form of RhoB.  相似文献   

4.
The Rho family GTPases RhoA, RhoB, and RhoC regulate the actin cytoskeleton, cell movement, and cell growth. Unlike Ras, up-regulation or overexpression of these GDP/GTP binding molecular switches, but not activating point mutations, has been associated with human cancer. Although they share over 85% sequence identity, RhoA, RhoB, and RhoC appear to play distinct roles in cell transformation and metastasis. In NIH 3T3 cells, RhoA or RhoB overexpression causes transformation whereas RhoC increases the cell migration rate. To specifically target RhoA, RhoB, or RhoC function, we have generated a set of chimeric molecules by fusing the RhoGAP domain of p190, a GTPase-activating protein that accelerates the intrinsic GTPase activity of all three Rho GTPases, with the C-terminal hypervariable sequences of RhoA, RhoB, or RhoC. The p190-Rho chimeras were active as GTPase-activating proteins toward RhoA in vitro, co-localized with the respective active Rho proteins, and specifically down-regulated Rho protein activities in cells depending on which Rho GTPase sequences were included in the chimeras. In particular, the p190-RhoA-C chimera specifically inhibited RhoA-induced transformation whereas p190-RhoC-C specifically reversed the migration phenotype induced by the active RhoC. In human mammary epithelial-RhoC breast cancer cells, p190-RhoC-C, but not p190-RhoA-C or p190-RhoB-C, reversed the anchorage-independent growth and invasion phenotypes caused by RhoC overexpression. In the highly metastatic A375-M human melanoma cells, p190-RhoC-C specifically reversed migration, and invasion phenotypes attributed to RhoC up-regulation. Thus, we have developed a novel strategy utilizing RhoGAP-Rho chimeras to specifically down-regulate individual Rho activity and demonstrate that this approach may be applied to multiple human tumor cells to reverse the growth and/or invasion phenotypes associated with disregulation of a distinct subtype of Rho GTPase.  相似文献   

5.
RhoB is an endosomal small GTPase that is implicated in the response to growth factors, genotoxic stress, and farnesyltransferase inhibitors. To gain insight into its physiological functions we examined the consequences of homozygous gene deletion in the mouse. Loss of RhoB did not adversely affect mouse development, fertility, or wound healing. However, embryo fibroblasts cultured in vitro exhibited a defect in motility, suggesting that RhoB has a role in this process that is conditional on cell stress. Neoplastic transformation by adenovirus E1A and mutant Ras yielded differences in cell attachment and spreading that were not apparent in primary cells. In addition, transformed -/- cells displayed altered actin and proliferative responses to transforming growth factor beta. A negative modifier role in transformation was suggested by the increased susceptibility of -/- mice to 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis and by the increased efficiency of intraperitoneal tumor formation by -/- cells. Our findings suggest that RhoB is a negative regulator of integrin and growth factor signals that are involved in neoplastic transformation and possibly other stress or disease states.  相似文献   

6.
Small-molecule inhibitors of the housekeeping enzyme farnesyltransferase (FT) suppress the malignant growth of Ras-transformed cells. Previous work suggested that the activity of these compounds reflected effects on actin stress fiber regulation rather than Ras inhibition. Rho proteins regulate stress fiber formation, and one member of this family, RhoB, is farnesylated in vivo. Therefore, we tested the hypothesis that interference with RhoB was the principal basis by which the peptidomimetic FT inhibitor L-739,749 suppressed Ras transformation. The half-life of RhoB was found to be approximately 2 h, supporting the possibility that it could be functionally depleted within the 18-h period required by L-739,749 to induce reversion. Cell treatment with L-739,749 disrupted the vesicular localization of RhoB but did not effect the localization of the closely related RhoA protein. Ras-transformed Rat1 cells ectopically expressing N-myristylated forms of RhoB (Myr-rhoB), whose vesicular localization was unaffected by L-739,749, were resistant to drug treatment. The protective effect of Myr-rhoB required the integrity of the RhoB effector domain and was not due to a gain-of-function effect of myristylation on cell growth. In contrast, Rat1 cells transformed by a myristylated Ras construct remained susceptible to growth inhibition by L-739,749. We concluded that Rho is necessary for Ras transformation and that FT inhibitors suppress the transformed phenotype at least in part by direct or indirect interference with Rho, possibly with RhoB itself.  相似文献   

7.
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Galpha(12/13) family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Galpha(12), Galpha(13), or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Galpha(13) or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Galpha(12/13)/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.  相似文献   

8.
9.
10.
Our previous results demonstrated that expressing the GTPase ras homolog gene family, member B (RhoB) in radiosensitive NIH3T3 cells increases their survival following 2 Gy irradiation (SF2). We have first demonstrated here that RhoB expression inhibits radiation-induced mitotic cell death. RhoB is present in both a farnesylated and a geranylgeranylated form in vivo. By expressing RhoB mutants encoding for farnesylated (RhoB-F cells), geranylgeranylated or the CAAX deleted form of RhoB, we have then shown that only RhoB-F expression was able to increase the SF2 value by reducing the sensitivity of these cells to radiation-induced mitotic cell death. Moreover, RhoB-F cells showed an increased G2 arrest and an inhibition of centrosome overduplication following irradiation mediated by the Rho-kinase, strongly suggesting that RhoB-F may control centrosome overduplication during the G2 arrest after irradiation. Overall, our results for the first time clearly implicate farnesylated RhoB as a crucial protein in mediating cellular resistance to radiation-induced nonapoptotic cell death.  相似文献   

11.
12.
Recent studies showed that specific isoprenoid modification may be critical for RhoB subcellular location and function. Therefore, we determined whether the function of the highly related RhoA protein is also critically dependent on specific isoprenoid modification: (a) in contrast to observations with RhoB or Ras proteins, where farnesylated and geranylgeranylated versions showed differences in subcellular location, both prenylated versions of RhoA showed the same plasma membrane and cytosolic location; (b) a farnesylated version of activated RhoA(63L) retained the same diverse functions as the normally geranylgeranylated RhoA(63L) protein, and both proteins show indistinguishable abilities to stimulate gene expression, cause growth transformation of NIH 3T3 mouse fibroblasts, to stimulate the motility of T47D human breast epithelial cells, and to block HIV-1 viral replication and gene expression; and (c) cells expressing farnesylated RhoA retained sensitivity to the growth inhibition caused by inhibition of geranylgeranyltransferase I, indicating that other proteins are critical targets for inhibitors of geranylgeranylation.  相似文献   

13.
The fact that proteins such as Ras require farnesylation to induce malignant transformation prompted many investigators to design farnesyl transferase inhibitors (FTI) as novel anticancer drugs. FTIs inhibit the growth of ras transformed cells in vitro and induce tumor regression in ras dependent tumor in vivo. Moreover, FTIs inhibit tumor progression in human tumor xenograft models. Currently, FTIs are undergoing phase I and II trials in various cancer types. They show impressive antitumour efficacy and they lack toxicity. Despite these promising results, the development of such molecules in hindered by the absence of appropriate clinical endpoints and of surrogate biological markers. Indeed, it seems likely that Ras is not the critical target of FTIs and that inhibition of the farnesylation of proteins such as RhoB, might also contribute to the observed antitumour properties. Identification of targets that underlie their biological effect is essential in order to predict and evaluate their efficacy.  相似文献   

14.
Isoprenoids influence expression of Ras and Ras-related proteins   总被引:4,自引:0,他引:4  
Mevalonate depletion by inhibition of hydroxymethylglutaryl coenzyme A reductase impairs post-translational processing of Ras and Ras-related proteins. We have previously shown that this mevalonate depletion also leads to the upregulation of Ras, Rap1a, RhoA, and RhoB. This upregulation may result from global inhibition of isoprenylation or depletion of key regulatory isoprenoid species. Studies utilizing specific isoprenoid pyrophosphates in mevalonate-depleted cells reveal that farnesyl pyrophosphate (FPP) restores Ras processing and prevents RhoB upregulation while geranylgeranyl pyrophosphate (GGPP) restores Rap1a processing and prevents RhoA and RhoB upregulation. Either FPP or GGPP completely prevents lovastatin-induced upregulation of RhoB mRNA. Inhibition of FPP or squalene synthase allowed for the further identification of the putative regulatory species. Studies involving the specific isoprenyl transferase inhibitors FTI-277 and GGTI-286 demonstrate that selective inhibition of protein isoprenylation does not mimic lovastatin's ability to increase Ras and RhoA synthesis, decrease Ras and RhoA degradation, increase RhoB mRNA, or increase total levels of Ras, Rap1a, RhoA, and RhoB. In aggregate, these findings reveal a novel role and mechanism for isoprenoids to influence levels of Ras and Ras-related proteins.  相似文献   

15.
16.
Although recent evidence supports a tumor-suppressive role for the GTPase RhoB, little is known about its regulation by signal transduction pathways. Here we demonstrate that Ras downregulates RhoB expression by a phosphatidylinositol 3-kinase (PI3K)- and Akt- but not Mek-dependent mechanism. Furthermore, genetic and pharmacological blockade of PI3K/Akt results in upregulation of RhoB expression. We also provide evidence for the importance of the downregulation of RhoB in oncogenesis by demonstrating that RhoB antagonizes Ras/PI3K/Akt malignancy. Ectopic expression of RhoB, but not the close relative RhoA, inhibits Ras, PI3K, and Akt induction of transformation, migration, and invasion and induces apoptosis and anoikis. Finally, RhoB inhibits melanoma metastasis to the lung in a mouse model. These studies identify suppression of RhoB as a mechanism by which the Ras/PI3K/Akt pathway induces tumor survival, transformation, invasion, and metastasis.  相似文献   

17.
CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities   总被引:8,自引:2,他引:6       下载免费PDF全文
Activated forms of different Rho family members (CDC42, Rac1, RhoA, RhoB, and RhoG) have been shown to transform NIH 3T3 cells as well as contribute to Ras transformation. Rho family guanine nucleotide exchange factors (GEFs) (also known as Dbl family proteins) that activate CDC42, Rac1, and RhoA also demonstrate oncogenic potential. The faciogenital dysplasia gene product, FGD1, is a Dbl family member that has recently been shown to function as a CDC42-specific GEF. Mutations within the FGD1 locus cosegregate with faciogenital dysplasia, a multisystemic disorder resulting in extensive growth impairments throughout the skeletal and urogenital systems. Here we demonstrate that FGD1 expression is sufficient to cause tumorigenic transformation of NIH 3T3 fibroblasts. Although both FGD1 and constitutively activated CDC42 cooperated with Raf and showed synergistic focus-forming activity, both quantitative and qualitative differences in their functions were seen. FGD1 and CDC42 also activated common nuclear signaling pathways. However, whereas both showed comparable activation of c-Jun, CDC42 showed stronger activation of serum response factor and FGD1 was consistently a better activator of Elk-1. Although coexpression of FGD1 with specific inhibitors of CDC42 function demonstrated the dependence of FGD1 signaling activity on CDC42 function, FGD1 signaling activities were not always consistent with the direct or exclusive stimulation of CDC42 function. In summary, FGD1 and CDC42 signaling and transformation are distinct, thus suggesting that FGD1 may be mediating some of its biological activities through non-CDC42 targets.  相似文献   

18.
Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis.   总被引:6,自引:0,他引:6  
Elevated expression of plasminogen activator inhibitor-1 (PAI-1) in tumors is associated with a poor prognosis in many cancers. Reduced tumor growth and angiogenesis have also been reported in mice deficient in PAI-1. These results suggest that PAI-1 may be required for efficient angiogenesis and tumor growth. In the present study, we demonstrate that PAI-1 can both enhance and inhibit the growth of M21 human melanoma tumors in nude mice and that this appears to be due to PAI-1 regulation of angiogenesis. Quantitative analysis of angiogenesis in a Matrigel implant assay indicated that in PAI-1 null mice angiogenesis was reduced approximately 60% compared with wild-type mice, while in mice overexpressing PAI-1, angiogenesis was increased nearly 3-fold. Furthermore, addition of PAI-1 to implants in wild-type mice enhanced angiogenesis up to 3-fold at low concentrations but inhibited angiogenesis nearly completely at high concentrations. Together, these data demonstrate that PAI-1 is a potent regulator of angiogenesis and hence of tumor growth and suggest that understanding the mechanism of this activity may lead to the development of important new therapeutic agents for controlling pathologic angiogenesis.  相似文献   

19.
Budanov AV  Karin M 《Cell》2008,134(3):451-460
The tumor suppressor p53 is activated upon genotoxic and oxidative stress and in turn inhibits cell proliferation and growth through induction of specific target genes. Cell growth is positively regulated by mTOR, whose activity is inhibited by the TSC1:TSC2 complex. Although genotoxic stress has been suggested to inhibit mTOR via p53-mediated activation of mTOR inhibitors, the precise mechanism of this link was unknown. We now demonstrate that the products of two p53 target genes, Sestrin1 and Sestrin2, activate the AMP-responsive protein kinase (AMPK) and target it to phosphorylate TSC2 and stimulate its GAP activity, thereby inhibiting mTOR. Correspondingly, Sestrin2-deficient mice fail to inhibit mTOR signaling upon genotoxic challenge. Sestrin1 and Sestrin2 therefore provide an important link between genotoxic stress, p53 and the mTOR signaling pathway.  相似文献   

20.
RhoB is a small GTPase implicated in cytoskeletal organization, EGF receptor trafficking and cell transformation. It is an immediate-early gene, regulated at many levels of its biosynthetic pathway. Herein we show that the serine/threonine protein kinase CK1 phosphorylates RhoB in vitro but not RhoA or RhoC. With the use of specific CK1 inhibitors, IC261 and D4476, we show that the kinase phosphorylates also RhoB in HeLa cells. Mass spectrometry analysis demonstrates that RhoB is monophosphorylated by CK1, in its C-terminal end, on serine 185. The substitution of Ser185 by Ala dramatically inhibited the phosphorylation of RhoB in cultured cells. Lastly we show that the inhibition of CK1 activates RhoB and promotes RhoB dependent actin fiber formation and EGF-R level. Our data provide the first demonstration of RhoB phosphorylation and indicate that this post-translational maturation would be a novel critical mechanism to control the RhoB functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号