首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Oct4 exerts a dose-dependent dual action, as both a gatekeeper for stem cell pluripotency and in driving cells toward specific lineages. Here, we identify the molecular mechanism underlying this dual function. BMP2- or transgene-induced Oct4 up-regulation drives human embryonic and induced pluripotent stem cells to become cardiac progenitors. When embryonic stem cell pluripotency is achieved, Oct4 switches from the Sox2 to the Sox17 promoter. This switch allows the cells to turn off the pluripotency Oct4-Sox2 loop and to turn on the Sox17 promoter. This powerful process generates a subset of endoderm-expressing Sox17 and Hex, both regulators of paracrine signals for cardiogenesis (i.e., Wnt, BMP2) released into the medium surrounding colonies of embryonic stem cells. Our data thus reveal a novel molecular Oct4- and Sox17-mediated mechanism that disrupts the stem cell microenvironment favoring pluripotency to provide a novel paracrine endodermal environment in which cell lineage is determined and commits the cells to a cardiogenic fate.  相似文献   

7.
8.
9.
10.
11.
12.
The identity of embryonic stem cells (ESCs) is controlled by a set of pluripotency genes, including Oct4, Sox2, Nanog, and Fgf4. How their expression is repressed during differentiation and reactivated during reprogramming is largely unknown. Here, using mouse ESCs as well as F9 and P19 cells (mouse embryonal carcinoma cell lines, P19 being considered further differentiated than F9 cells) as models, we found that HDAC inhibitors elevated Fgf4 expression in P19 cells, but reduced it in F9 cells. We also observed that HDAC inhibitors enhanced the expression of Fgf4 and a subset of pluripotency genes in differentiated ESCs, but reduced their expression in undifferentiated and less differentiated ESCs. Mechanistically, we observed more HDAC1 recruitment and a weaker association of histone 4 lysine 5 acetylation at the Fgf4 enhancer in P19 cells compared to F9 cells. Additionally, we demonstrated the interaction between Sox2 and HDAC1 both in vitro and in vivo, implicating a possible role for Sox2 in the recruitment of HDAC1 to the Fgf4 enhancer. We also found that Nanog bound to the Fgf4 enhancer, and this binding was stronger in F9 cells, indicating the involvement of Nanog in the regulation of Fgf4 expression in undifferentiated and less differentiated pluripotent stem cells. This study uncovers an important role of HDAC1 and histone modifications in the repression of Fgf4 and perhaps other pluripotency genes during ESC differentiation. Our results also suggest that HDAC inhibitors may promote reprogramming partially through activating pluripotency genes at some intermediate stages.  相似文献   

13.
14.
15.
Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma‐associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2‐overexpressing iPS cells from hMAGEA2‐overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self‐renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self‐renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.  相似文献   

16.
SP Liu  HJ Harn  YJ Chien  CH Chang  CY Hsu  RH Fu  YC Huang  SY Chen  WC Shyu  SZ Lin 《PloS one》2012,7(9):e44024
In 2006, induced pluripotent stem (iPS) cells were generated from somatic cells by introducing Oct4, Sox2, c-Myc and Klf4. The original process was inefficient; maintaining the pluripotency of embryonic stem (ES) and iPS cell cultures required an expensive reagent-leukemia induced factor (LIF). Our goal is to find a pure compound that not only maintains ES and iPS cell pluripotency, but also increases iPS cell generation efficiency. From 15 candidate compounds we determined that 10 μg/ml n-Butylidenephthalide (BP), an Angelica sinensis extract, triggers the up-regulation of Oct4 and Sox2 gene expression levels in MEF cells. We used ES and iPS cells treated with different concentrations of BP to test its usefulness for maintaining stem cell pluripotency. Results indicate higher expression levels of several stem cell markers in BP-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryoid body formation and differentiation results confirm that BP containing medium culture was capable of maintaining ES cell pluripotency after six time passage. Microarray analysis data identified PPAR, ECM, and Jak-Stat signaling as the top three deregulated pathways. We subsequently determined that phosphorylated Jak2 and phosphorylated Stat3 protein levels increased following BP treatment and suppressed with the Jak2 inhibitor, AG490. The gene expression levels of cytokines associated with the Jak2-Stat3 pathway were also up-regulated. Last, we used pou5f1-GFP MEF cells to test iPS generation efficiency following BP treatment. Our data demonstrate the ability of BP to maintain stem cell pluripotency via the Jak2-Stat3 pathway by inducing cytokine expression levels, at the same time improving iPS generation efficiency.  相似文献   

17.
Self-renewal and pluripotency of embryonic stem (ES) cells are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct4, Nanog and Sox2. The mechanism regulating these signaling cascades in ES cells is of great interest. Recently, we have demonstrated that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptides (ANP and BNP, respectively), is expressed in pre-implantation embryos and in ES cells. Here, we examined whether NPR-A is involved in the maintenance of ES cell pluripotency. RNA interference-mediated knockdown of NPR-A resulted in phenotypic changes, indicative of differentiation, downregulation of pluripotency factors (such as Oct4, Nanog and Sox2) and upregulation of differentiation genes. NPR-A knockdown also resulted in a marked downregulation of phosphorylated Akt. Furthermore, NPR-A knockdown induced accumulation of ES cells in the G1 phase of the cell cycle. Interestingly, we found that ANP was expressed in self-renewing ES cells, whereas its level was reduced after ES cell differentiation. Treatment of ES cells with ANP upregulated the expression of Oct4, Nanog and phosphorylated Akt, and this upregulation depended on NPR-A signaling, because it was completely reversed by pretreatment with either an NPR-A antagonist or a cGMP-dependent protein kinase inhibitor. These findings provide a novel role for NPR-A in the maintenance of self-renewal and pluripotency of ES cells.  相似文献   

18.
19.
20.
In our previous work, we isolated Arbas Cashmere goat hair follicle stem cells (gHFSCs) and explored the pluripotency. In this study, we investigated the expression and putative role of Sox9 in the gHFSCs. Immunofluorescence staining showed that Sox9 is predominantly expressed in the bulge region of the Arbas Cashmere goat hair follicle, and also positively expressed in both nucleus and cytoplasm of the gHFSCs. When the cells were transfected using Sox9-shRNA, cell growth slowed down and the expression of related genes decreased significantly, cell cycle was abnormal, while the expression of terminal differentiation marker loricrin was markedly increased; cells lost the typical morphology of HFSCs; the mRNA and protein expression of gHFSCs markers and stem cell pluripotency associated factors were all significantly decreased; the expression of Wnt signaling pathway genes LEF1, TCF1,c-Myc were significantly changed. These results suggested that Sox9 plays important role in gHFSCs characteristics and pluripotency maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号