首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
  • Rewardless plants can attract pollinators by mimicking floral traits of rewarding heterospecific plants. This should result in the pollination success of floral mimics being dependent on the relative abundance of their models, as pollinator abundance and conditioning on model signals should be higher in the vicinity of the models. However, the attraction of pollinators to signals of the models may be partially innate, such that spatial isolation of mimics from model species may not strongly affect pollination success of mimics.
  • We tested whether pollination rates and fruit set of the rewardless orchid Disa pulchra were influenced by proximity and abundance of its rewarding model species, Watsonia lepida.
  • Pollination success of the orchid increased with proximity to the model species, while fruit set of the orchid increased with local abundance of the model species. Orchids that were experimentally translocated outside the model population experienced reduced pollinaria removal and increased pollinator‐mediated self‐pollination.
  • These results confirm predictions that the pollination success of floral mimics should be dependent on the proximity and abundance of model taxa, and thus highlight the importance of ecological facilitation among species involved in mimicry systems.
  相似文献   

2.
Plants that lack floral rewards may nevertheless attract pollinators through mimetic resemblance to the flowers of co-occurring rewarding plants. We show how a deceptive orchid (Disa nivea) successfully exploits a reciprocally specialized mutualism between a nectar-producing plant (Zaluzianskya microsiphon) and its long-proboscid fly pollinator (Prosoeca ganglbaueri). Disa nivea is a rare southern African orchid known only from habitats that support large populations of Z. microsiphon, which it closely resembles in both general morphology and floral spectral reflectance. Significant covariation in floral traits of Z. microsiphon and D. nivea was detected among populations. Where mimics are uncommon, flies do not appear to discriminate between the flowers of the two species. Pollination success in D. nivea was much higher at a site with abundant Z. microsiphon plants than at a site where Z. microsiphon was rare. Exploitation of a highly specialized mutualism appears to demand a high degree of phenotypic resemblance to a rewarding model by a deceptive mimic, as exemplified by D. nivea. The majority of deceptive orchids, on the other hand, exploit relatively generalized pollination systems and thus require only a vague resemblance to rewarding plants in the community in order to attract pollinators.  相似文献   

3.
European food-deceptive orchids generally flower early in spring and rely on naïve pollinators for their reproduction. Some species however, flower later in the summer, when many other rewarding plants species are also in bloom. In dense flowering communities, deceptive orchids may suffer from competition for pollinator resources, or might alternatively benefit from higher community attractiveness. We investigated the pollination strategy of the deceptive species Traunsteinera globosa, and more specifically whether it benefited from the presence of coflowering rewarding species. We carried out a population survey to quantify the density and reproductive success of the orchid as well as the density of all coflowering species. Our results suggest that the deceptive orchid not only benefited from the presence of coflowering species, but that interestingly the density of the species Trifolium pratense was significantly positively correlated with the orchid's reproductive success. This species might simply act as a magnet species attracting pollinators near T. globosa, or could influence the orchid reproductive fitness through a more species-specific interaction. We propose that morphological or colour similarities between the two species should be investigated in more detail to decipher this pollination facilitation effect.  相似文献   

4.
Plant reproductive success within a patch may depend on plant aggregation through pollinator attraction. For rewardless plants that lack rewards for pollinators, reproductive success may rely strongly on the learning abilities of pollinators. These abilities depend on relative co-flowering rewarding and rewardless plant species spatial distributions. We investigated the effect of aggregation on the reproductive success of a rewardless orchid by setting up 16 arrays in a factorial design with two levels of intraspecific aggregation for both a rewardless orchid and a rewarding co-flowering species. Our results show that increasing aggregation of both species negatively influenced the reproductive success of the rewardless plants. To our knowledge, this is the first experimental study demonstrating negative effects of aggregation on reproductive success of a rewardless species due both to its own spatial aggregation and that of a co-flowering rewarding species. We argue that pollinator learning behaviour is the key driver behind this result.The authors declare that the experiments presented here comply with the current laws applicable in the country in which they were performed (France).  相似文献   

5.
Many modern crop varieties rely on animal pollination to set fruit and seeds. Intensive crop plantations usually do not provide suitable habitats for pollinators so crop yield may depend on the surrounding vegetation to maintain pollination services. However, little is known about the effect of pollinator‐mediated interactions among co‐flowering plants on crop yield or the underlying mechanisms. Plant reproductive success is complex, involving several pre‐ and post‐pollination events; however, the current literature has mainly focused on pre‐pollination events in natural plant communities. We assessed pollinator sharing and the contribution to pollinator diet in a community of wild and cultivated plants that co‐flower with a focal papaya plantation. In addition, we assessed heterospecific pollen transfer to the stigmatic loads of papaya and its effect on fruit and seed production. We found that papaya shared at least one pollinator species with the majority of the co‐flowering plants. Despite this, heterospecific pollen transfer in cultivated papaya was low in open‐pollinated flowers. Hand‐pollination experiments suggest that heterospecific pollen transfer has no negative effect on fruit production or weight, but does reduce seed production. These results suggest that co‐flowering plants offer valuable floral resources to pollinators that are shared with cultivated papaya with little or no cost in terms of heterospecific pollen transfer. Although HP reduced seed production, a reduced number of seeds per se are not negative, given that from an agronomic perspective the number of seeds does not affect the monetary value of the papaya fruit.  相似文献   

6.
Decreases in pollinator abundance may particularly constrain plants that lack floral rewards, since they are poor competitors for pollinators in the plant community. Here, we documented the pollination ecology of a rewardless orchid, Calanthe reflexa Maxim., and examined effects of forest understory degradation by deer browsing on pollination success of the species in the light of a change in the abundance of neighboring flowering plants in 2010 and 2011. Bombus species were the only pollinators at each site and the flowering phenology of C. reflexa did not overlap with that of other rewarding plants. Pollinator visit rates (assessed by time‐lapse photography), and pollinia removal rate were higher in the undegraded understory site than the degraded site in both years, while the fruit set ratio did not differ between the sites in 2011. Coverage by neighboring flowering plants was extremely low in the degraded site. Our results suggest that, although its flowering phenology and consequently lower interspecific competition of C. reflexa with rewarding plants for attracting bumblebees, neighboring flowering plants may play an important role for maintaining the visitation frequency of bumblebees of C. reflexa and contribute to its pollination success.  相似文献   

7.
We analyze two mathematical models of adaptive investment in rewarding plant traits. In both models, the attractiveness of a particular trait value declines as the mean value in the population increases (asymmetric competition), giving relatively rewarding traits a competitive advantage. Including this competition for pollinator visits in a standard model of hermaphroditic sex allocation shifts additional allocation to pollinator rewards at the expense of allocation to pollen and seeds. In the second model, plants can invest additional resources in pollinator rewards but suffer reduced viability and rising costs due to excess pollen removal and within-plant selfing (geitonogamy). Despite these accumulating costs, increasing the magnitude of asymmetric competition exaggerates the ESS investment in rewards beyond the equilibrium in cases where attractiveness depends only on a plant’s absolute reward value. We suggest that the type of frequency dependent selection modeled here is fundamentally equivalent to sexual selection in animal populations (with some unique exceptions). Testing the main assumptions of our models may reveal whether seemingly “extravagant” floral traits are strictly analogous to the exaggerated secondary sexual traits of animals. An erratum to this article can be found at  相似文献   

8.

Background and Aims

Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.

Methods

Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.

Key Results

The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.

Conclusions

Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.  相似文献   

9.
Capó  Miquel  Perelló-Suau  Sebastià  Rita  Juan 《Plant Ecology》2022,223(4):423-436

Pollination of deceptive orchids has enabled scientists to understand how these species avoid inbreeding depression by reducing the number of pollinator visits per inflorescence. In rewarding species, which receive a higher rate of visits per plant, geitonogamy is usually higher and therefore the risk of inbreeding increases. In this study, we assess the breeding system of the rewarding orchid A. coriophora, and the spatio-temporal changes in its fitness as well as variation in nectar content after pollination. We found that the species partially selects allogamous pollen if pollinia from the same stalk and other plants arrive to the stigma. Furthermore, when self-pollination occurs, despite successful fructification, seed viability is significantly lower than that of cross-pollinated plants. A. coriophora exhibits spatio-temporal variation in fitness that does not correlate with any plant feature. Moreover, nectar volume is reduced after pollination, but the sugar concentration is maintained. This study emphasizes how essential the pre-zygotic and post-zygotic reproductive barriers are for rewarding orchids to avoid inbreeding depression.

  相似文献   

10.
Feldman TS 《Oecologia》2008,156(4):807-817
Plants may experience reduced reproductive success at low densities, due to lower numbers of pollinator visits or reduced visit quality. Co-occurring plant species that share pollinators have the potential to facilitate pollination by either increasing numbers of pollinator visits or increasing the quality of visits, but also have the potential to reduce plant reproductive success through competition for pollination. I used a field experiment with a common distylous perennial (Piriqueta caroliniana) in the presence and absence of a co-flowering species (Coreopsis leavenworthii) in plots with one of four different distances between conspecific plants. I found strong negative effects of increasing interplant distance (related to conspecific density) on several components of P. caroliniana reproductive success: pollinator visits to plants per plot visit, visits received by individual plants, conspecific pollen grains on stigmas, outcross pollen grains on stigmas, and probability of fruit production. Although P. caroliniana and C. leavenworthii share pollinators, the co-flowering species did not affect visitation, pollen receipt or reproductive effort in P. caroliniana. Pollinators moved very infrequently between species in this experiment, so floral constancy might explain the lack of effect of the co-flowering species on P. caroliniana reproductive success at low densities. In co-occurring self-incompatible plants with floral rewards, reproductive success at low density may depend more on conspecific densities than on the presence of other species.  相似文献   

11.
In most pollination systems, animals transfer pollen among plants of a given species. Pollinator visitations do not come without cost, so plants usually offer a reward. However, the flowers of some plant species, mostly orchids, lack rewards and deceive animals into visiting their flowers. Deceptive species are thought to have high levels of variation in traits associated with advertisement and pollinator attraction, which have been attributed to genetic drift, or disruptive selection due to pollinator behavior. Rewarding species are assumed to have less variation due to stabilizing selection. We compared variability in floral morphology and fragrance composition between deceptive and rewarding species. Because both suites of traits are often linked with floral advertisement and pollinator attraction, we expected variation to be greater in species with deceptive pollination systems than in those offering rewards. We obtained floral morphology metrics for 20 deceptive species and 41 rewarding species native or naturalized in Puerto Rico, Venezuela, and Ecuador. Floral fragrances were sampled from eight deceptive species and four rewarding species. We found that the amplitude of variation in floral morphology and fragrance composition covaries significantly. Comparison of coefficients of variation for morphology indicated that, overall, deceptive species show significantly higher variation than rewarding species, and this pattern was also found among just orchids or just nonorchids. There were no statistical differences in morphological variation between orchids and nonorchids within a functional pollination group. Fragrance variation, measured by Jaccard distance, tended to be greater for deceptive species than for rewarding species. Although overlap in measures of variation occurs between the two groups, the data support the hypothesis that populations of deception-pollinated species are more variable than rewarding species in traits associated with pollinator attraction.  相似文献   

12.
Benjamin R. Montgomery 《Oikos》2009,118(7):1084-1092
Pollinator constancy and pollen carryover are both thought to mitigate competitive effects that result when shared pollinators cause loss of pollen to heterospecific flowers. I present analytical and simulation models to investigate how pollinator constancy and pollen carryover interact with each other and with the relationship between pollen receipt and seed set to determine pollination success in competitive environments. With inconstant pollinators, increased pollen carryover reduces variance in pollen receipt without affecting average pollen receipt. Consequently, for flowers requiring at least a threshold quantity of pollen for success, rare flowers with inconstant pollinators benefit from reduced carryover, especially for high pollen receipt thresholds, whereas common flowers benefit from increased carryover, especially for low receipt thresholds. Pollinator constancy is predicted to increase pollen receipt, especially if pollen carryover rates are low. As a result, increased pollinator constancy reduces the range of pollen receipt thresholds for which carryover is beneficial. Similarly, for flowers whose pollination success is a convex function of pollen receipt, carryover is expected to increase fecundity if pollinators are inconstant, but with even a low degree of pollinator constancy, carryover reduces fecundity. These results predict that rare plants with many ovules per flower benefit from dispersing aggregations of pollen, especially if their pollinators exhibit constancy, whereas plants with inconstant pollinators and low thresholds of pollen receipt benefit from pollen grains dispersing individually to increase the number of flowers reached by the pollen.  相似文献   

13.
Simultaneously flowering plant species may indirectly interact with each other by influencing the quantity of pollinator visitation and/or the quality of pollen that is transferred. These effects on pollination may depend on how pollinators respond to floral resources at multiple levels. In this study, we demonstrate pollinator-mediated negative interactions between two invasive plants, Carduus acanthoides and Carduus nutans. Using constructed arrays of the two species, alone and in mixture, we quantified pollinator visitation at the patch and individual plant levels and measured seed production. We found that co-occurrence of our species led to a shift in pollinator services at both levels. Greater interference occurred when arrays were small and spacings between neighboring plants were large. A spatially explicit movement model suggests that pollinator foraging behavior, which mediates the interactions between plants, was driven by floral display size rather than species identity per se. Pollinator behavior significantly reduced the proportion of seed set for both species relative to that in single-species arrays. Overall, the dependence of pollinator behavior on patch size, spacing between plants, and patch composition can lead to pollinator-mediated plant interactions that range from facilitative to competitive.  相似文献   

14.
Pollination success and pollen dispersal in natural populations depend on the spatial‐temporal variation of flower abundance. For plants that lack rewards for pollinators, pollination success is predicted to be negatively related to flower density and flowering synchrony. We investigated the relationships between pollination success and flower abundance and flowering synchrony, and estimated pollinia dispersal distance in a rewardless species, Changnienia amoena (Orchidaceae). The results obtained in the present study revealed that male pollination success was negatively influenced by population size but was positively affected by population density, whereas female pollination success was independent of both population size and density. Phenotypic analysis suggested that highly synchronous flowering was advantageous through total pollination success, which is in contrast to previous studies. These results indicate that pollination facilitation rather than competition for pollinator visits occurs in this rewardless plant. The median distance of pollinia dispersal was 11.5 m (mean distance = 17.5 m), which is comparable to that of other rewardless plants but longer than for rewarding plants. However, pollen transfer occured mainly within populations; pollen import was a rare event. Restricted gene flow by pollinia and seeds probably explains the previous population genetic reporting a high degree of genetic differentiation between populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 477–488.  相似文献   

15.
We hypothesize interactions among plants for pollination may depend on pollinator abundance, which always varies among years and habitats and has different effects on plant reproductive success. Honeybee-pollinated plants, Lotus corniculatus, and its commonly coflowering neighbor, Potentilla reptans var. sericophylla, were used in a two-year project. We designed six types of plant combinations with different conspecific and interspecific flower densities in 2011 and repeated this in the same site in 2012. Meanwhile, we artificially increased pollinator abundance by hiring beehives only in 2011. Pollinator abundance as well as flower density significantly affected pollination of L. corniculatus plants from both the conspecific and interspecific plots. Total number of bees visiting a plot was enhanced by an increase in both the conspecific and interspecific flower densities regardless of high or low pollinator abundance. However, changes in visitation rates and fruit sets in the focal plants when flower densities were increased depended on pollinator abundance. Under high pollinator abundance, an increase in both the conspecific and interspecific flower densities significantly enhanced pollinator visits to L. corniculatus. However, under low pollinator abundance, the pollinator visitation rate remained unchanged as conspecific flower density increased, but decreased when there was an increase in interspecific flower density. Coflowering plants enhanced fruit sets of L. corniculatus only when the pollinator abundance was high. The findings suggest that the interactions among plants for pollination are influenced not only by a plant density threshold, but also by a pollinator abundance threshold.  相似文献   

16.

Background

Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1) pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2) pollination success could be enhanced because of increased pollinator abundance in the vicinity.

Methodology/Principal Findings

We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L.) or next to a cereal crop (wheat, Triticum spp.). Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.

Conclusions/Significance

The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season). We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.  相似文献   

17.
Multiple factors determine plant reproductive success and their influence may vary spatially. This study addresses several factors influencing female reproductive success in three populations of Ruellia nudiflora, specifically we: (i) determine if fruit set is pollen‐limited and if pollinator visitation rates are related to this condition; (ii) estimate fruit set via autonomous self‐pollination (AS) and relate it to the magnitude of herkogamy; and (iii) evaluate if fruit abortion is a post‐pollination mechanism that determines the magnitude of pollen limitation. At each site we marked 35 plants, grouped as: unmanipulated control (C) plants subjected to open pollination, plants manually cross‐pollinated (MP), and plants excluded from pollinators and only able to self‐pollinate autonomously (AS). Fruit set was greater for MP relative to C plants providing evidence for pollen limitation, while a tendency was observed for lower fruit abortion of MP relative to C plants suggesting that fruit set is influenced not only by pollen delivery per se, but also by subsequent abortion. In addition, although pollinator visits varied significantly among populations, the magnitude of pollen limitation did not, suggesting that pollinator activity was not relevant in determining pollen limitation. Finally, fruit set tended to decrease with the degree of herkogamy for AS plants, but this result was inconclusive. These findings have contributed to identify which factors influence reproductive success in populations of R. nudiflora, with potentially relevant implications for population genetic structure and mating system evolution of this species.  相似文献   

18.
Morphology and phenology influence plant–pollinator network structure, but whether they generate more stable pairwise interactions with higher pollination success remains unknown. Here we evaluate the importance of morphological trait matching, phenological overlap and specialisation for the spatio‐temporal stability (measured as variability) of plant–pollinator interactions and for pollination success, while controlling for species' abundance. To this end, we combined a 6‐year plant–pollinator interaction dataset, with information on species traits, phenologies, specialisation, abundance and pollination success, into structural equation models. Interactions among abundant plants and pollinators with well‐matched traits and phenologies formed the stable and functional backbone of the pollination network, whereas poorly matched interactions were variable in time and had lower pollination success. We conclude that phenological overlap could be more useful for predicting changes in species interactions than species abundances, and that non‐random extinction of species with well‐matched traits could decrease the stability of interactions within communities and reduce their functioning.  相似文献   

19.
Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.  相似文献   

20.
Some species of flowering plants engage in nonmodel deceptive pollination, attracting pollinators by large nonmimetic floral displays and providing no reward. Pollinators can learn to avoid deceptive plants and to favor nectariferous species. The reproductive success of these species is expected to be density dependent for two opposite reasons: the commoner cheating flowers are, the easier they are to avoid and the lower the quality of the patch, making it more difficult to recognize that unrewarding flowers are not profitable. When a deceptive species is made up of multiple floral variants, pollinators' learning could decrease the reproductive success of any particularly common floral variant. Within a population of deceptive plants, mean reproductive success could, therefore, vary with the number of floral variants. We investigate these three hypotheses by modeling the behavior of pollinators foraging in communities of deceptive and rewarding flowers. Simulations revealed that the reproductive success of deceptive flowers varies in a density-dependent manner and that floral variants can be submitted to negative frequency-dependent selection. We compare density dependence in nonmodel deceptive species to what is expected in Batesian mimics and discuss possible selection of morphological variants. Finally, we survey how pollinators' learning capacities can make mean reproductive success depend on morphological variability within a population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号