首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The flavoenzyme nikD is required for the biosynthesis of nikkomycin antibiotics. NikD exhibits an unusual long wavelength absorption band attributed to a charge transfer complex of FAD with an unknown charge transfer donor. NikD crystals contain an endogenous active site ligand. At least four different compounds are detected in nikD extracts, including variable amounts of two ADP derivatives that bind to the enzyme's dinucleotide binding motif in competition with FAD, picolinate (0.07 mol/mol of nikD) and an unknown picolinate-like compound. Picolinate, the product of the physiological catalytic reaction, matches the properties deduced for the active site ligand in nikD crystals. The charge transfer band is eliminated upon mixing nikD with excess picolinate but not by a reversible unfolding procedure that removes the picolinate-like compound, ruling out both compounds as the intrinsic charge transfer donor. Mutation of Trp355 to Phe eliminates the charge transfer band, accompanied by a 30-fold decrease in substrate binding affinity. The results provide definitive evidence for Trp355 as the intrinsic charge transfer donor. The indole ring of Trp355 is coplanar with or perpendicular to the flavin ring in "open" or "closed" crystalline forms of nikD, respectively. Importantly, a coplanar configuration is required for charge transfer interaction. Absorption in the long wavelength region therefore constitutes a valuable probe for monitoring conformational changes in solution that are likely to be important in nikD catalysis.  相似文献   

2.
Venci D  Zhao G  Jorns MS 《Biochemistry》2002,41(52):15795-15802
Nikkomycin antibiotics are potent inhibitors of chitin synthase, effective as therapeutic antifungal agents in humans and easily degradable insecticides in agriculture. NikD is a novel flavoprotein that catalyzes the oxidation of Delta(1)- or Delta(2)-piperideine-2-carboxylate, a key step in the biosynthesis of nikkomycin antibiotics. The resulting dihydropicolinate product may be further oxidized by nikD or converted to picolinate in a nonenzymic reaction. Saturated nitrogen heterocycles (L-pipecolate, L-proline) and 3,4-dehydro-L-proline act as alternate substrates. The ability of nikD to oxidize 3,4-dehydro-L-proline, but not 1-cyclohexenoate, suggests that the enzyme is specific for the oxidation of a carbon-nitrogen bond. An equivalent reaction is possible with the enamine (Delta(2)), but not the imine (Delta(1)), form of the natural piperideine-2-carboxylate substrate. Apparent steady-state kinetic parameters for the reaction of nikD with Delta(1)- or Delta(2)-piperideine-2-carboxylate (k(cat) = 64 min(-1); K(m) = 5.2 microM) or 3,4-dehydro-L-proline (k(cat) = 18 min(-1); K(m) = 13 mM) were determined in air-saturated buffer by measuring hydrogen peroxide formation in a coupled assay. NikD appears to be a new member of the monomeric sarcosine oxidase (MSOX) family of amine oxidizing enzymes. The enzyme contains 1 mol of flavin adenine dinucleotide (FAD) covalently linked to Cys321. The covalent flavin attachment site and two residues that bind substrate carboxylate in MSOX are conserved in nikD. NikD, however, exhibits an unusual long-wavelength absorption band, attributed to charge-transfer interaction between FAD and an ionizable (pK(a) = 7.3) active-site residue. Similar long-wavelength absorption bands have been observed for flavoproteins containing an active site cysteine or cysteine sulfenic acid. Interestingly, Cys273 in nikD aligns with an active-site histidine in MSOX (His269) that is, otherwise, a highly conserved residue within the MSOX family.  相似文献   

3.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

4.
Thioredoxin reductase (EC 1.6.4.5) is a widely distributed flavoprotein that catalyzes the NADPH-dependent reduction of thioredoxin. Thioredoxin plays several key roles in maintaining the redox environment of the cell. Like all members of the enzyme family that includes lipoamide dehydrogenase, glutathione reductase and mercuric reductase, thioredoxin reductase contains a redox active disulfide adjacent to the flavin ring. Evolution has produced two forms of thioredoxin reductase, a protein in prokaryotes, archaea and lower eukaryotes having a Mr of 35 000, and a protein in higher eukaryotes having a Mr of 55 000. Reducing equivalents are transferred from the apolar flavin binding site to the protein substrate by distinct mechanisms in the two forms of thioredoxin reductase. In the low Mr enzyme, interconversion between two conformations occurs twice in each catalytic cycle. After reduction of the disulfide by the flavin, the pyridine nucleotide domain must rotate with respect to the flavin domain in order to expose the nascent dithiol for reaction with thioredoxin; this motion repositions the pyridine ring adjacent to the flavin ring. In the high Mr enzyme, a third redox active group shuttles the reducing equivalent from the apolar active site to the protein surface. This group is a second redox active disulfide in thioredoxin reductase from Plasmodium falciparum and a selenenylsulfide in the mammalian enzyme. P. falciparum is the major causative agent of malaria and it is hoped that the chemical difference between the two high Mr forms may be exploited for drug design.  相似文献   

5.
Phosphonoacetaldehyde hydrolase (phosphonatase) from Bacillus cereus catalyzes hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) via a Schiff base intermediate formed with Lys53. A single turnover requires binding of Pald to the active site of the core domain, closure of the cap domain containing the Lys53 over the core domain, and dissociation of the products following catalysis. The ligand binding and dissociation steps occur from the "open conformer" (domains are separated and the active site is solvent-exposed), while catalysis occurs from the "closed conformer" (domains are bound together and the active site is sequestered from solvent). To test the hypothesis that bound substrate stabilizes the closed conformer, thus facilitating catalysis, the rates of chemical modification of Lys53 in the presence and absence of inert substrate and/or product analogues were compared. Acetylation of Lys53 with 2,4-dinitrophenylacetate (DNPA) resulted in the loss of enzyme activity. The pseudo-first-order rate constant for inactivation varied with pH. The pH profile of inactivation is consistent with a pK(a) of 9.3 for Lys53. The inhibitors tungstate and vinyl sulfonate, which are known to bind to active site residues comprising the core domain, protected Lys53 from acetylation. These results are consistent with a dynamic equilibrium between the open and closed conformations of phosphonatase and the hypothesis that ligand binding stabilizes the closed conformation required for catalytic turnover.  相似文献   

6.
The "flavin destructase" enzyme BluB catalyzes the unprecedented conversion of flavin mononucleotide (FMN) to 5,6-dimethylbenzimidazole (DMB), a component of vitamin B(12). Because of its unusual chemistry, the mechanism of this transformation has remained elusive. This study reports the identification of 12 mutant forms of BluB that have severely reduced catalytic function, though most retain the ability to bind flavin. The "flavin destructase" BluB is an unusual enzyme that fragments the flavin cofactor FMNH(2) in the presence of oxygen to produce 5,6-dimethylbenzimidazole (DMB), the lower axial ligand of vitamin B(12) (cobalamin). Despite the similarities in sequence and structure between BluB and the nitroreductase and flavin oxidoreductase enzyme families, BluB is the only enzyme known to fragment a flavin isoalloxazine ring. To explore the catalytic residues involved in this unusual reaction, mutants of BluB impaired in DMB biosynthesis were identified in a genetic screen in the bacterium Sinorhizobium meliloti. Of the 16 unique point mutations identified in the screen, the majority were located in conserved residues in the active site or in the unique "lid" domain proposed to shield the active site from solvent. Steady-state enzyme assays of 12 purified mutant proteins showed a significant reduction in DMB synthesis in all of the mutants, with eight completely defective in DMB production. Ten of these mutants have weaker binding affinities for both oxidized and reduced FMN, though only two have a significant effect on complex stability. These results implicate several conserved residues in BluB's unique ability to fragment FMNH(2) and demonstrate the sensitivity of BluB's active site to structural perturbations. This work lays the foundation for mechanistic studies of this enzyme and further advances our understanding of the structure-function relationship of BluB.  相似文献   

7.
The native flavin, FAD, was removed from chicken liver xanthine dehydrogenase and milk xanthine oxidase by incubation with CaCl2. The deflavoenzymes, still retaining their molybdopterin and iron-sulfur prosthetic groups, were reconstituted with a series of FAD derivatives containing chemically reactive or environmentally sensitive substituents in the isoalloxazine ring system. The reconstituted enzymes containing these artificial flavins were all catalytically active. With both the chicken liver dehydrogenase and the milk oxidase, the flavin 8-position was found to be freely accessible to solvent. The flavin 6-position was also freely accessible to solvent in milk xanthine oxidase, but was significantly less exposed to solvent in the chicken liver dehydrogenase. Pronounced differences in protein structure surrounding the bound flavin were indicated by the spectral properties of the two enzymes reconstituted with flavins containing ionizable -OH or -SH substituents at the flavin 6- or 8-positions. Milk xanthine oxidase either displayed no preference for binding of the neutral or anionic flavin (8-OH-FAD) or a slight preference for the anionic form of the flavin (6-hydroxy-FAD, 6-mercapto-FAD, and possibly 8-mercapto-FAD). On the other hand, the chicken liver dehydrogenase had a dramatic preference for binding the neutral (protonated) forms of all four flavins, perturbing the pK of the ionizable substituent greater than or equal to 4 pH units. These results imply the existence of a strong negative charge in the flavin binding site of the dehydrogenase, which is absent in the oxidase.  相似文献   

8.
p-Hydroxybenzoate hydroxylase is extensively studied as a model for single-component flavoprotein monooxygenases. It catalyzes a reaction in two parts: (1) reduction of the FAD in the enzyme by NADPH in response to binding of p-hydroxybenzoate to the enzyme and (2) oxidation of reduced FAD with oxygen in an environment free from solvent to form a hydroperoxide, which then reacts with p-hydroxybenzoate to form an oxygenated product. These different reactions are coordinated through conformational rearrangements of the protein and the isoalloxazine ring during catalysis. Until recently, it has not been clear how p-hydroxybenzoate gains access to the buried active site. In 2002, a structure of a mutant form of the enzyme without substrate was published that showed an open conformation with solvent access to the active site [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613]. The wild-type enzyme does not form high-resolution crystals without substrate. We hypothesized that the wild-type enzyme without substrate also forms an open conformation for binding p-hydroxybenzoate, but only transiently. To test this idea, we have studied the properties of two different mutant forms of the enzyme that are stabilized in the open conformation. These mutant enzymes bind p-hydroxybenzoate very fast, but with very low affinity, as expected from the open structure. The mutant enzymes are extremely inactive, but are capable of slowly forming small amounts of product by the normal catalytic pathway. The lack of activity results from the failure of the mutants to readily form the out conformation required for flavin reduction by NADPH. The mutants form a large fraction of an abnormal conformation of the reduced enzyme with p-hydroxybenzoate bound. This conformation of the enzyme is unreactive with oxygen. We conclude that transient formation of this open conformation is the mechanism for sequestering p-hydroxybenzoate to initiate catalysis. This overall study emphasizes the role that protein dynamics can play in enzymatic catalysis.  相似文献   

9.
Hritz J  Zoldák G  Sedlák E 《Proteins》2006,64(2):465-476
NADH oxidase (NOX) from Thermus thermophilus is a member of a structurally homologous flavoprotein family of nitroreductases and flavin reductases. The importance of local conformational dynamics in the active site of NOX has been recently demonstrated. The enzyme activity was increased by 250% in the presence of 1 M urea with no apparent perturbation of the native structure of the protein. The present in silico results correlate with the in vitro data and suggest the possible explanation about the effect of urea on NOX activity at the molecular level. Both, X-ray structure and molecular dynamics (MD) simulations, show open conformation of the active site represented by approximately 0.9 nm distance between the indole ring of Trp47 and the isoalloxazine ring of FMN412. In this conformation, the substrate molecule can bind in the active site without sterical restraints. MD simulations also indicate more stable conformation of the active site called "closed" conformation. In this conformation, Trp47 and the isoalloxazine ring of FMN412 are so close to each other (approximately 0.5 nm) that the substrate molecule is unable to bind between them without perturbing this conformation. The open/close transition of the active site between Trp47 and the flavin ring is accompanied by release of the "tightly" bound water molecule from the active site--cofactor assisted gating mechanism. The presence of urea in aqueous solutions of NOX prohibits closing of the active site and even unlocks the closed active site because of the concomitant binding of a urea molecule in the active site cavity. The binding of urea in the active site is stabilized by formation of one/two persistent hydrogen bonds involving the carbonyl group of the urea molecule. Our report represents the first MD study of an enzyme from the novel flavoprotein family of nitroreductases and flavin reductases. The common occurrence of aromatic residues covering the active sites in homologous enzymes suggests the possibility of a general gating mechanism and the importance of local dynamics within this flavoprotein family.  相似文献   

10.
The structure of the maltodextrin or maltose-binding protein, an initial receptor for bacterial ABC-type active transport and chemotaxis, consists of two globular domains that are separated by a groove wherein the ligand is bound and enclosed by an inter-domain rotation. Here, we report the determination of the crystal structures of the protein complexed with reduced maltooligosaccharides (maltotriitol and maltotetraitol) in both the "closed" and "open" forms. Although these modified sugars bind to the receptor, they are not transported by the wild-type transporter. In the closed structures, the reduced sugars are buried in the groove and bound by both domains, one domain mainly by hydrogen-bonding interactions and the other domain primarily by non-polar interactions with aromatic side-chains. In the open structures, which abrogate both cellular activities of active transport and chemotaxis because of the large separation between the two domains, the sugars are bound almost exclusively to the domain rich in aromatic residues. The binding site for the open chain glucitol residue extends to a subsite that is distinct from those for the glucose residues that were uncovered in prior structural studies of the binding of active linear maltooligosaccharides. Occupation of this subsite may also account for the inability of the reduced oligosaccharides to be transported. The structures reported here, combined with those previously determined for several other complexes with active oligosaccharides in the closed form and with cyclodextrin in the open form, revealed at least four distinct modes of ligand binding but with only one being functionally active. This versatility reflects the flexibility of the protein, from very large motions of interdomain rotation to more localized side-chain conformational changes, and adaptation by the oligosaccharides as well.  相似文献   

11.
Bug proteins form a large family of periplasmic solute-binding proteins well represented in beta-proteobacteria. They adopt a characteristic Venus flytrap fold with two globular domains bisected by a ligand-binding cleft. The structures of two liganded Bug proteins have revealed that the family is specific for carboxylated solutes, with a characteristic mode of binding involving two highly conserved beta strand-beta turn-alpha helix motifs originating from each domain. These two motifs form hydrogen bonds with a carboxylate group of the ligand, both directly and via conserved water molecules, and have thus been termed the carboxylate pincers. In both crystallized Bug proteins, the ligands were found enclosed between the two domains and inaccessible to solvent, suggesting an inter-domain hinge-bending motion upon ligand binding. We report here the first structures of an open, unliganded Bug protein and of the same protein with a citrate ion bound in the open cavity. One of the ligand carboxylate groups is bound to one half of the carboxylate pincers by the beta strand-beta turn-alpha helix motif from domain 1, and the citrate ion forms several additional interactions with domain 1. The ligand is accessible to solvent and has very few contacts with domain 2. In this open, liganded structure, the second part of the carboxylate pincers originating from domain 2 is not stabilized by ligand binding, and a loop replaces the beta turn. In the unliganded structure, both motifs of the carboxylate pincers are highly mobile, and neither of the two beta turns is formed. Thus, ligand recognition is performed by domain 1, with the carboxylate group serving as an initial anchoring point. Stabilization of the closed conformation requires proper interactions to be established with domain 2, and thus domain 2 discriminates between productively and non-productively bound ligands.  相似文献   

12.
Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.  相似文献   

13.
Cholesterol oxidase (3 beta-hydroxysteroid oxidase, EC 1.1.3.6) is an FAD-dependent enzyme that carries out the oxidation and isomerization of steroids with a trans A : B ring junction. The crystal structure of the enzyme from Brevibacterium sterolicum has been determined using the method of isomorphous replacement and refined to 1.8 A resolution. The refined model includes 492 amino acid residues, the FAD prosthetic group and 453 solvent molecules. The crystallographic R-factor is 15.3% for all reflections between 10.0 A and 1.8 A resolution. The structure is made up of two domains: an FAD-binding domain and a steroid-binding domain. The FAD-binding domain consists of three non-continuous segments of sequence, including both the N terminus and the C terminus, and is made up of a six-stranded beta-sheet sandwiched between a four-stranded beta-sheet and three alpha-helices. The overall topology of this domain is very similar to other FAD-binding proteins. The steroid-binding domain consists of two non-continuous segments of sequence and contains a six-stranded antiparallel beta-sheet forming the "roof" of the active-site cavity. This large beta-sheet structure and the connections between the strands are topologically similar to the substrate-binding domain of the FAD-binding protein para-hydroxybenzoate hydroxylase. The active site lies at the interface of the two domains, in a large cavity filled with a well-ordered lattice of 13 solvent molecules. The flavin ring system of FAD lies on the "floor" of the cavity with N-5 of the ring system exposed. The ring system is twisted from a planar conformation by an angle of approximately 17 degrees, allowing hydrogen-bond interactions between the protein and the pyrimidine ring of FAD. The amino acid residues that line the active site are predominantly hydrophobic along the side of the cavity nearest the benzene ring of the flavin ring system, and are more hydrophilic on the opposite side near the pyrimidine ring. The cavity is buried inside the protein molecule, but three hydrophobic loops at the surface of the molecule show relatively high temperature factors, suggesting a flexible region that may form a possible path by which the substrate could enter the cavity. The active-site cavity contains one charged residue, Glu361, for which the side-chain electron density suggests a high degree of mobility for the side-chain. This residue is appropriately positioned to act as the proton acceptor in the proposed mechanism for the isomerization step.  相似文献   

14.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   

15.
Imidazole glycerol phosphate synthase catalyzes formation of the imidazole ring in histidine biosynthesis. The enzyme is also a glutamine amidotransferase, which produces ammonia in a glutaminase active site and channels it through a 30-A internal tunnel to a cyclase active site. Glutaminase activity is impaired in the resting enzyme, and stimulated by substrate binding in the cyclase active site. The signaling mechanism was investigated in the crystal structure of a ternary complex in which the glutaminase active site was inactivated by a glutamine analogue and the unstable cyclase substrate was cryo-trapped in the active site. The orientation of N(1)-(5'-phosphoribulosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide in the cyclase active site implicates one side of the cyclase domain in signaling to the glutaminase domain. This side of the cyclase domain contains the interdomain hinge. Two interdomain hydrogen bonds, which do not exist in more open forms of the enzyme, are proposed as molecular signals. One hydrogen bond connects the cyclase domain to the substrate analogue in the glutaminase active site. The second hydrogen bond connects to a peptide that forms an oxyanion hole for stabilization of transient negative charge during glutamine hydrolysis. Peptide rearrangement induced by a fully closed domain interface is proposed to activate the glutaminase by unblocking the oxyanion hole. This interpretation is consistent with biochemical results [Myers, R. S., et al., (2003) Biochemistry 42, 7013-7022, the accompanying paper in this issue] and with structures of the free enzyme and a binary complex with a second glutamine analogue.  相似文献   

16.
The active site of spinach glycolate oxidase   总被引:10,自引:0,他引:10  
  相似文献   

17.
Oxynitrilase containing 2-thioFAD [C(2) = S] in place of FAD exhibits catalytic activity similar to that of native enzyme. Reaction of methyl methanethiolsulfonate with 2-thioFAD bound to oxynitrilase results in the formation of the corresponding flavin disulfide [C(2)-SSCH3]. Normal flavin [C(2) = O] is formed by reacting 2-thioFAD oxynitrilase with m-chloroperoxybenzoate or H2O2. Both reactions proceed via a spectrally detectable flavin 2-S-oxide intermediate [C(2) = S+-O-], but sizable amounts of this intermediate accumulate only in the m-chloroperoxybenzoate reaction (about 40%). While similar reactions have been reported with free 2-thioflavin, kinetic and other data indicate that the oxynitrilase reactions occur with intact enzyme. This shows that the 2-position of the pyrimidine ring in the bound coenzyme is accessible to solvent. The data are consistent with previous studies on the reaction of peroxides with oxynitrilase-bound 5-deazaFAD which show that the pyrimidine ring is accessible at position 4. Analogous studies indicate that the pyrimidine ring is buried in the case of flavin bound to lactate oxidase, since the data indicate that both positions 2 and 4 are inaccessible to solvent.  相似文献   

18.
Clostridium perfringens biotype A strains are the causative agents of gas-gangrene in man and are also implicated as etiological agents in sudden death syndrome in young domestic livestock. The main virulence factor produced by these strains is a zinc-dependent, phosphatidylcholine-preferring phospholipase C (alpha-toxin). The crystal structure of alpha-toxin, at pH 7.5, with the active site open and therefore accessible to substrate has previously been reported, as has calcium-binding to the C-terminal domain of the enzyme at pH 4.7. Here we focus on conformation changes in the N-terminal domain of alpha-toxin in crystals grown at acidic pH. These changes result in both the obscuring of the toxin active site and the loss of one of three zinc ions from it. Additionally, this "closed" form contains a small alpha helix, not present in the open structure, which hydrogen bonds to both the N and C-terminal domains. In conjunction with the previously reported findings that alpha-toxin can exist in active and inactive forms and that Thr74Ile and Phe69Cys substitutions markedly reduced the haemolytic activity of the enzyme, our work suggests that these loop conformations play a critical role in the activity of the toxin.  相似文献   

19.
Time-resolved fluorescence and fluorescence anisotropy data surfaces of flavin adenine dinucleotide bound to lipoamide dehydrogenase from Azotobacter vinelandii in 80% glycerol have been obtained by variation of excitation energy and temperature between 203 and 303 K. The fluorescence kinetics of a deletion mutant lacking 14 COOH-terminal amino acids were compared with the wild-type enzyme to study a possible interaction of the COOH-terminal tail with the active site of the enzyme. The flavin adenine dinucleotide fluorescence in both proteins exhibits a bimodal lifetime distribution as recovered by the maximum entropy method of data analysis. The difference in standard enthalpy and entropy of associated conformational substates was retrieved from the fractional contributions of the two lifetime classes. Activation energies of thermal quenching were obtained that confirm that the isoalloxazines in the deletion mutant are solvent accessible in contrast to the wild-type enzyme. Red-edge spectroscopy in conjunction with variation of temperature provides the necessary experimental axes to interpret the fluorescence depolarization in terms of intersubunit energy transfer rather than reorientational dynamics of the flavins. The results can be explained by a compartmental model that describes the anisotropy decay of a binary, inhomogeneously broadened, homoenergy transfer system. By using this model in a global analysis of the fluorescence anisotropy decay surface, the distance between and relative orientation of the two isoalloxazine rings are elucidated. For the wild-type enzyme, this geometrical information is in agreement with crystallographic data of the A. vinelandii enzyme, whereas the mutual orientation of the subunits in the deletion mutant is slightly altered. In addition, the ambiguity in the direction of the emission transition moment in the isoalloxazine ring is solved. The anisotropy decay parameters also provide information on electronic and dipolar relaxational properties of the flavin active site. The local environment of the prosthetic groups in the deletion mutant of the A. vinelandii enzyme is highly inhomogeneous, and a transition from slow to rapid dipolar relaxation is observed over the measured temperature range. In the highly homogeneous active site of the wild-type enzyme, dipolar relaxation is slowed down beyond the time scale of fluorescence emission at any temperature studied. Our results are in favor of a COOH-terminal polypeptide interacting with the active site, thereby shielding the isoalloxazines from the solvent. This biological system forms a very appropriate tool to test the validity of photophysical models describing homoenergy transfer.  相似文献   

20.
Glutathione synthase catalyzes the final ATP-dependent step in glutathione biosynthesis, the formation of glutathione from gamma-glutamylcysteine and glycine. We have determined structures of yeast glutathione synthase in two forms: unbound (2.3 A resolution) and bound to its substrate gamma-glutamylcysteine, the ATP analog AMP-PNP, and two magnesium ions (1.8 A resolution). These structures reveal that upon substrate binding, large domain motions convert the enzyme from an open unliganded form to a closed conformation in which protein domains completely surround the substrate in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号