首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral glycolipids and gangliosides of NIH 3T3 cells oncogenically transformed by transfection of DNAs from human lung carcinoma (Lx-1) and human bladder carcinoma (Ej) have been investigated. The chemical quantity and the degree of cell surface exposure of gangliotriaosylceramide (Gg3) were greatly enhanced in NIH 3T3 cells transformed by transfection of DNAs of either Lx-1 or Ej carcinoma cells. An identical but more conspicuous change in cell surface exposure of Gg3 was observed in BALB/c 3T3 cells transformed by murine sarcoma virus Kirsten strain, but the same glycolipid was absent in the original Lx-1 or Ej human carcinomas. The mechanism that defines the chemical quantity and the organization of glycolipids is controlled by multiple factors. These include not only the quantity but also the organization of glycosyl transferases and hydrolases in membranes. This also involves membrane dynamics regulated through a cytoskeletal-membrane conjunction which may determine the degree of glycolipid exposure at the cell surface. The similarity of the chemical and organizational change of a single glycolipid, Gg3, between 3T3 transformants by Kirsten murine sarcoma virus and those by transfection of human cancer DNAs may indicate a common biochemical basis triggered by activation of the oncogene.  相似文献   

2.
NCTC 2071A cells, a line of transformed murine fibroblasts, grow in serum-free medium, are deficient in gangliosides, synthesize fibronectin, but do not retain and organize it on the cell surface. When the cells are exposed to exogenous gangliosides, fibrillar strands of fibronectin become attached to the cell surface. A morphologically distinct variant of NCTC 2071A cells was observed to both retain cell surface fibronectin and organize it into a fibrillar network when the cells were stained with anti-fibronectin antibodies and a fluorescent second antibody. A revertant cell type appeared to resemble the parental NCTC 2071A cells in terms of morphology and fibronectin organization. All three cell types were subjected to mild NaIO4 oxidation and reduction with KB3H4 of very high specific radioactivity in order to label the sialic acid residues of surface gangliosides. The variant had much more surface gangliosides than the parental, particularly more complex gangliosides corresponding to GM1 and GD1a. The surface gangliosides of the revertant were intermediate between the parental and the variant. By using sialidase, which hydrolyzes GD1a to GM1, and 125I-labeled cholera toxin, which binds specifically to GM1, the identity and levels of these gangliosides were confirmed in the three cell types. When variant cells were exposed to sialidase for 2 d, there appeared to be little change in fibronectin organization. Concomitant treatment of the cells with the B subunit of cholera toxin, which bound to all the surface GM1 including that generated by the sialidase, however, eliminated the fibrillar network of fibronectin. In addition, exposure of the variant cells to a 70,000-mol-wt fragment of fibronectin, which lacks the cell attachment domain but contains a matrix assembly domain, inhibited the formation of fibers. Finally, all three cell types were assayed for their ability to attach to and spread on fibronectin-coated surfaces; no significant differences were found. Our results further establish that the ability of a cell to organize fibronectin into an extracellular matrix is dependent on certain gangliosides, but they also indicate that cell adhesion to fibronectin is independent of these gangliosides. We suggest that matrix organization and cell attachment and spreading are based on separate mechanisms and that these functions are associated with different cell surface "receptors."  相似文献   

3.
The cloned C3H/10T1/2 mouse embryo cells contained a complex pattern of gangliosides. Two cloned chemical transformants obtained from the C3H/10T1/2 cell line by treatment with 7,12-dimethylbenz(a) anthracene (DMBA-TCL1) and 3-methylcholanthrene (MCA-TCL15) also had complex ganglioside patterns; but the transformants had increased levels of the simplest ganglioside, N-acetylneuraminylgalactosylglucosylceramide (GM3), and reduced levels of more complex gangliosides. Incorporation of [14C]glucosamine into gangliosides, as cell-to-cell contact increased in C3H/10T1/2 cells, showed that GM3 synthesis was decreased and that the synthesis of the more complex ganglioside N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GD1a) was increased. In the two transformants the percentage each individual ganglioside was of total labeled gangliosides was only slightly altered with changing cell density. Turnover of [14C]glucosamine-labeled gangliosides, as cell density increased, was approximately equal in C3H/10T1/2 cells and MCA-TCL15 cells, but more rapid in the DMBA-TCL1 cells. Most individual gangliosides turned over at about the same rate in the respective cell lines. However, GD1a increased slightly as a percentage of total labeled gangliosides with increasing cell density in both C3H/10T1/2 cells and transformed cells. The labeling data indicated that the majority of GD1a synthesis was de novo and only a small part occurred by transfer of sialyl or glycosyl residues to simpler gangliosides or catabolism of more complex gangliosides already present in the outer membrane. Exogenous complex gangliosides added to the medium were more effective inhibitors of DMBA-TCL1 cell growth than of C3H/10T1/2 cell growth. Furthermore, gangliosides added to exponentially growing C3H/10T1/2 and DMBA-TCL1 cells caused both cell lines to incorporate a greater percentage of [14C]glucosamine into gangliosides more complex than GM3.  相似文献   

4.
Cytosolic Chinese hamster ovary (CHO) cell sialidase has been cloned as a soluble glutathione S-transferase (GST)-sialidase fusion protein with an apparent molecular weight of 69 kD in Escherichia coli. The enzyme has then been produced in mg quantities at 25-L bioreactor scale and purified by one-step affinity chromatography on glutathione sepharose (Burg, M.; Müthing, J. Carbohydr. Res. 2001, 330, 335-346). The cloned sialidase was probed for desialylation of a wide spectrum of different types of gangliosides using a thin-layer chromatography (TLC) overlay kinetic assay. Different gangliosides were separated on silica gel precoated TLC plates, incubated with increasing concentrations of sialidase (50 degreesU/mL up to 1.6 mU/mL) without detergents, and desialylated gangliosides were detected with specific anti-asialoganglioside antibodies. The enzyme exhibited almost identical hydrolysis activity in degradation of GM3(Neu5Ac) and GM3(Neu5Gc). A slightly enhanced activity, compared with reference Vibrio cholerae sialidase, was detected towards terminally alpha(2-3)-sialylated neolacto-series gangliosides IV3-alpha-Neu5Ac-nLc4Cer and VI3-alpha-Neu5Ac-nLc6Cer. The ganglio-series gangliosides G(D1a), G(D1b), and G(T1b), the preferential substrates of V. cholerae sialidase for generating cleavage-resistant G(M1), were less suitable targets for the CHO cell sialidase. The increasing evidence on colocalization of gangliosides and sialidase in the cytosol strongly suggests the involvement of the cytosolic sialidase in ganglioside metabolism on intracellular level by yet unknown mechanisms.  相似文献   

5.
Abstract: N′-Acetyl-d -[6-3H]mannosamine was administered to 13- and 28-day-old rats by intraventricular injection. At various time intervals following the injection, synaptic membranes were prepared and the incorporation of radiolabel into sialic acid residues released from endogenous glycoproteins and gangliosides by intrinsic sialidase determined. Radiolabel was incorporated into synaptic membrane gangliosides and glycoproteins, and at all times tested, >90% of the label was associated with sialic acid. Sialic acid released from endogenous glycoproteins by intrinsic sialidase present in 28-day membranes incorporated only 20–25% as much radiolabel per nmole as sialic acid released by mild acid hydrolysis or by exogenous neuraminidase. In contrast, sialic acid released from glycoproteins present in 13-day-old membranes by intrinsic sialidase, mild acid hydrolysis, or exogenous neuraminidase all were similarly labelled. At both ages the specific radioactivity (cpm/nmol) of sialic acid released from gangliosides by the intrinsic enzyme was similar to the total ganglioside sialic acid released by mild acid hydrolysis. The results identify glycoprotein substrates for intrinsic synaptic membrane sialidase as a distinct metabolic class in the mature brain and suggest the occurrence of a developmentally related change in the metabolism of these glycoproteins.  相似文献   

6.
Ha KT  Lee YC  Cho SH  Kim JK  Kim CH 《Molecules and cells》2004,17(2):267-273
Endogenous expression of human membrane type ganglioside sialidase (Neu3) was examined in various cell lines including NB-1, U87MG, SK-MEL-2, SK-N-MC, HepG2, Hep3B, Jurkat, HL-60, K562, ECV304, Hela and MCF-7. Expression was detected in the neuroblastoma cell lines NB-1 and SK-N-MC, and also in erythroleukemia K562 cells, but not in any other cells. We isolated a Neu3 cDNA from K562 cells and expressed a His-tagged derivative in a bacterial expression system. The purified recombinant product of approximately 48 kDa had sialidase activity toward 4-methyl-umbelliferyl-alpha-D-N-acetylneuraminic acid (4MU-NeuAc). The optimal pH of the purified Neu3 protein for GD3 ganglioside was 4.5. The enzyme also efficiently hydrolyzed GD3, GD1a, GD1b and GM3 whereas sialyllactose, 4MU-NeuAc, GM1 and GM2 were poor substrates, and it had no activity against sialylated glycoproteins such as fetuin, transferrin and orosomucoid. We conclude that the sialidase activity of Neu3 is specific for gangliosides.  相似文献   

7.
C3H/10T1/2 mouse embryo cells and a transformed clone were used in these initial experiments to investigate the future application of this model culture system to studies of ether-linked lipids in cancer cells. Clone 8 cells are nontumorigenic, nontransformed, and maintain normal morphology to passages 15–20. Clone 16 cells were derived from morphologically transformed foci of clone 8 cells exposed to the chemical carcinogen, 3-methylcholanthrene, and are highly tumorigenic. The data presented here demonstrate that the high amounts of ether-linked lipids, characteristic of tumors, are likewise elevated in cells that have been oncogenically transformed in vitro. When incubated with labeled fatty alcohols, the transformed cells show a stimulated incorporation of radioactivity into alkyldiacylglycerols (>100% over clone 8), whereas radioactivity in the alkyl moiety of the phospholipids is not altered. Analysis of the lipids formed from [1-14C]hexadecanol indicates that the nontransformed cells have a greater capacity to oxidize hexadecanol and incorporate the resulting carboxylic acid into acyl groups. Quantitative analysis of cellular lipids shows that in the oncogenically transformed cells alkyldiacylglycerols are increased (123% over clone 8).  相似文献   

8.
 本文~3H-TdR参入细胞DNA为指标研究了EGF等生长调节因子对小鼠腹水癌细胞DNA合成的影响,发现不同癌细胞对EGF等生长因子的敏感性有所差异,考虑到这也许与肿瘤细胞自身特性如恶性度有关。为了进一步探讨恶性度与这一敏感性是否相关,我们观察并比较了C_3H10T1/2CL_8(一种来源于鼠胚的正常成纤维细胞,简称NC_3H_(10)及转化的C_3H_(10)T1/2CL_8(用~3H-TdR转化的上述细胞,简称TC_3H_(10))对EGF等生长因子的敏感性。实验证明,细胞恶性转化后,对EGF的敏感性明显降低,~3H-TdR参入率降至原先的1/4以下。用DBcAMP作用于NC_3H_(10)和TC_3H_(10)均能抑制~3H-TdR参入DNA并可抑制EGF诱导的~3H-TdR参入作用。因此,我们认为,有关物理的致癌因素如放射性同位素,像生物、化学的致癌因素一样,亦能引起其转化细胞对外源性生长调节因子敏感性的改变。  相似文献   

9.
The cDNA of Chinese hamster ovary (CHO) cell cytosolic sialidase was amplified by RT-PCR and cloned into the pGEX-2T plasmid vector encoding for glutathione S-transferase (GST). Screening revealed transformed Escherichia coli clones with the constructed plasmid encoding the CHO cell sialidase sequence. After isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, SDS-PAGE of the total protein extracts revealed a new protein of about 70 kDa, correlating with the molecular weight of a fusion protein composed of the GST (26 kDa) and the cloned cytosolic CHO cell sialidase (43 kDa). A soluble fusion protein was purified from sonified E. coli homogenates by one-step affinity chromatography on Glutathione Sepharose 4B, which showed sialidase activity towards 4-methyl-umbelliferyl-alpha-D-N-acetylneuraminic acid (MUF-Neu5Ac) substrate. Induction of cells with 0.1, 0.5, and 1.0 mM IPTG revealed highest total protein amounts after induction with 1.0 mM IPTG, but highest specific activity for affinity chromatography purified eluates from cultures induced with 0.1 mM IPTG. Therefore, large scale production was performed by inducing cells during exponential growth in a 25 L bioreactor for 3 h with 0.1 mM IPTG after chilling the cell suspension to 25 degrees C. The amount of 26.46 mg of 40-fold purified GST-sialidase with a specific activity of 0.999 U/mg protein was obtained from crude protein extracts by one-step affinity chromatography. 2-Deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en) and Neu5Ac were competitive inhibitors for the sialidase, the former being the more effective one using MUF-Neu5Ac as the substrate. The cytosolic sialidase is capable of desialylating a wide spectrum of different types of gangliosides using a thin-layer chromatography overlay kinetic assay without detergents. This is the subject of the accompanying paper (Müthing, J.; Burg, M. Carbohydr. Res. 2001, 330, 347-356).  相似文献   

10.
The content and accessibility of terminal sialic acid and galactose residues of rat hepatocytes in primary culture were determined by in situ labeling using either periodate or sialidase/galactose oxidase treatment followed by sodium borotritiide reduction. Rat erythrocytes which were used for comparison showed a strongly enhanced tritium incorporation into galactose after sialidase treatment. In contrast, with freshly prepared rat hepatocytes only a small amount of galactose labeling was achieved after sialidase treatment. The amount of galactose labeled following sialidase treatment increased with time in culture up to day 6 and roughly paralleled the increase of the total sialic acid content. Major changes of sialic acid-containing glycoconjugates were restricted to the gangliosides. There was a transient drop in surface labeling of ganglioside-associated sialic acid on the first day in culture. The specific radioactivity of the in situ-tritiated ganglioside-sialic acid also fell by 50% in this period. Between day 2 and 4, there was an increase in gangliosidesialic acid labeling but the specific radioactivity of the sialic acid remained constant. This indicates that newly synthesized gangliosides but not the preexisting ones were accessible to periodate oxidation. The data allow conclusions about turnover and topology of the sialic acid-containing glycolipids.  相似文献   

11.
Cells from neural retina from 7-day chick embryos were cultured on polylysine-coated dishes up to 7 days. The small, round-shaped cells at seeding differentiated progressively, and after 4 days in vitro the majority had enlarged bodies and abundant processes. The content of protein and DNA was essentially unchanged during the entire period of culture. The incorporation of radioactivity from [3H]glucosamine into gangliosides declined slightly, reaching about 65% of the initial values at the end of the culture period. The proliferating activity measured by the incorporation of [3H]thymidine into DNA decreased to 10% or less of the initial value after 3 days in vitro. Almost at the same chronological times as in ovo, the synthesis of GD3 and of a ganglioside partially identified as GT3 decreased from 70 and 19% of the total incorporation into gangliosides in the first 20 h of culture to about 7 and 5%, respectively, after 3 days in vitro. Conversely, the synthesis of GD1a increased from about 6% at the beginning to about 70% at the end of the culture times. Immunocytochemical analyses of the expression of gangliotetraosyl gangliosides in cultured cells showed that these gangliosides appeared in the bodies and processes of cells having neuronal morphology; very little immunostaining of the scarce flattened cells, probably Müller cells, was found. The results indicate that the changes in ganglioside metabolism, which lead to decreased synthesis of gangliosides lacking the galactosyl-N-acetyl-galactosaminyl disaccharide end and to increased synthesis of gangliotetraosyl gangliosides, occur in cells that in culture differentiate into neurons.  相似文献   

12.
In this study, we discovered a subpopulation of 3T3 feeder cells were malignantly transformed by nasopharyngeal carcinoma (NPC) tumor cells during co-culture. The transformed 3T3 cells acquired an accelerated growth rate, displayed loosely attached multilayer growth in vitro and highly tumorigenic in vivo. Most strikingly, instead of forming sarcomas, they developed into carcinoma-like tumors somewhat resembling the original NPC. We further demonstrated the transformation is not a single isolated event, rather a common reproducible, cell contact dispensable phenomena among NPC tumor cells. However, NPC tumor cells alone were not sufficient to confer the transformed characteristics onto normal human cells.  相似文献   

13.
Summary Contact-inhibited 3T3 mouse fibroblast cells, in contrast to logarithmically growing 3T3 cells and SV-3T3 transformed cells, have increased levels of plasma membranebound phosphodiesterase (oligonucleotidase, E.C. 3.1.4.19; nucleotide pryrophosphatase, E.C. 3.6.1.9) activity. The increase in enzyme, recorded as increased specific activity, is reversible, as evidenced by the return to normal values following dilution of confluent 3T2 cells and re-initiation of growth. Increased enzyme activity is induced again when the cells regain the confluent state. Transformed SV-3T3 cells can be induced to mimic the contact inhibited state, including increased plasma membrane phosphodiesterase activity, by exposure to a combination of: (i) agents that are known to induce increased intracellular cAMP levels and (ii) additions of purified 3T3 or SV-3T3 plasma membranes. Additions of either alone fails to induce the increase in membrane phosphodiesterase activity, although each alone can significantly suppress cell growth, as measured by incorporation of3H amino acids.We suggest that the elevation of plasma membrane phosphodiesterase activity may serve as a measure of conversion to the contact-inhibited state in both normal cells and phenotypically reverted transformed cells.  相似文献   

14.
Tumor gangliosides inhibit the tumor-specific immune response.   总被引:6,自引:0,他引:6  
Tumor gangliosides are highly immunosuppressive membrane glycosphingolipids that are shed into the tumor cell microenvironment. We directly tested the impact of shed gangliosides on the in vivo antitumor immune response in a syngeneic fully autochthonous system (FBL-3 erythroleukemia cells, C57BL/6 mice, and highly purified FBL-3 cell gangliosides). The major FBL-3 ganglioside was identified as GM1b by mass spectrometry. Substantial ganglioside shedding (90 pmol/108 cells/h), a requisite for their inhibition of the immune function of tumor-infiltrating leukocytes, was detected. Immunosuppression by FBL-3 gangliosides was potent; 5-20 microM inhibited the tumor-specific secondary proliferative response (80-100%) and suppressed the generation of tumor-specific CTLs (97% reduction of FBL-3 cell lysis at an E:T ratio of 100:1). In vivo, coinjection of 10 nmol of FBL-3 gangliosides with a primary FBL-3 cell immunization led to a reduced response to a secondary challenge (the increase in the draining popliteal lymph node mass, cell number, and lymphocyte thymidine incorporation were lowered by 70, 69, and 72%, respectively). Coinjection of gangliosides with a secondary tumor challenge led to a 61, 74, and 42% reduction of the increase in lymph node mass, cell number, and thymidine uptake and a 63-74% inhibition of the increase of draining lymph node T cells (CD3+), B cells (CD19+), and dendritic cells/macrophages (Mac-3+). Overall, the clear conclusion that tumor-derived gangliosides inhibit syngeneic antitumor immune responses implicates these molecules as a potent factor in promoting tumor formation and progression.  相似文献   

15.
We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60?Gy and continued with time, at least up to 72?h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20?Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.  相似文献   

16.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

17.
Balb/3T3 cells transformed in culture by chemical carcinogens were shown to multiply in a medium supplemented with 2% calf serum or with 10% agamma new-born calf serum. The cell lines that multiply well in medium supplemented with 10% agamma serum produced a higher incidence of tumors in X-irradiated weanling mice than the lines that multiply poorly. The difference in 2-deoxy-D-glucose uptake into exponentially growing transformed and un-transformed cells was 50–100%. In crowded cultures untransformed Balb/3T3 cells ceased taking up the sugar, while chemically transformed cells continued at the same rate even at high cell densities; thus, the difference became greater in crowded cultures. When the serum concentration in the media was reduced from 10% to 2%, untransformed Balb/3T3 cells took up the sugar at a reduced rate, while chemically transformed cells were only slightly affected; agamma new born calf serum supplemented medium had no effect on sugar uptake in any of the cells. When the serum concentration was changed from 2% to 10%, untransformed cells increased sugar uptake followed by cell division. The immediacy (within 15 min) of the response in the sugar uptake to 10% serum concentration suggested that the increased uptake rate and the consequent higher concentration of the sugar (D-glucose in normal situation) within Balb/3T3 cells triggered the cell cycle. Chemical carcinogens appear to alter permanently the uptake mechanism for a key nutrient.  相似文献   

18.
We have examined the pattern of protein myristoylation in C3H10T1/2 fibroblasts during cell growth. During the growing phase of 10T1/2 cells, several proteins were radiolabelled with [3H]myristate, and among them proteins with molecular masses of 22, 35, a doublet of 42–45 and 67 kDa were labelled predominantly. The extent of myristoylation in each of these proteins changed with cell density. The amount of radioactivity incorporated into the 22 kDa protein in 10T1/2 cells decreased with increasing cell density and remained at a low level during the stationary phase. In contrast, the incorporation into the 67 kDa protein increased parallel to cell density. The density-dependent change of myristoylation was not observed in any of the transformants of 10T1/2 cells thus far examined. The 67 kDa protein was identified as MARCKS (myristoylated alanine-rich C kinase substrate) by immunoprecipitation with an anti-MARCKS antibody. By Western blot analysis, we found that the amount of MARCKS in 10T1/2 cells increased significantly analogous with cell density. Therefore, it is possible that MARCKS and the 22 kDa protein play a role in contact-mediated cell signalling in 10T1/2 cells, but the mechanism is lost in transformed cells. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Balb/3T3 cells show density-dependent regulation of multiplication with the final cell density depending on serum concentration in the media. Chemically transformed Balb/3T3 cells (Balb/3T3-D) pile up on each other, multiply to a high cell density, but have decreased DNA synthesis at very high cell densities. Balb/3T3-D cells require less serum for multiplication compared with original Balb/3T3 cells. A rat serum fraction and a bovine β-globulin fraction stimulate the multiplication of Balb/3T3 cells but only slightly stimulate Balb/3T3-D cells indicating different serum factors stimulate growth of these two cell types. The multiplication properties of Balb/3T3-D cells are very similar to those of SV-40 transformed 3T3 cells, however, these properties were brought about by a single treatment by a chemical carcinogen, without an exogenous virus. The transformation altered the contact of cells to one another, indicating a permanent chemical change in the membrane structure.  相似文献   

20.
Polyoma-virus-transformed 3T3 fibroblasts (py 3T3 cells) produce considerably more prostaglandin E2 than regular 3T3 cells during growth in cell culture. Incubations with exogenous arachidonic acid showed no increase in prostaglandin-producing capacity in the transformed cells. The rates of degradation of prostaglandin E2 were similar in the two lines. After labeling of cells with [1-14C]arachidonic acid, py 3T3 cultures continuously released radioactivity while the release by regular 3T3 cells was almost completed after 3 h. Prostaglandin E2 production during short incubations in buffer at various times after medium change was constantly higher in the transformed cells. Furthermore, hydrocortisone completely inhibited prostaglandin synthesis by the transformed cells. These results suggest that the increased formation of prostaglandin by py 3T3 cells is due to continuously elevated activity of phospholipase A2 or another acyl hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号