首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the factors causing fast growth of sprouts ofPasania edulis, photosynthetic activity and water relation characteristics of lower (mature) leaves and upper (expanding) leaves of the sprouts were compared with those of seedlings and adult trees ofP. edulis. Apparent quantum yield was generally low. Maximum photosynthetic rate was highest in the lower leaves of sprouts. Stomatal frequency was higher in sprout leaves than in seedling leaves. Osmotic potential at the water saturation point and water potential at the turgor loss point, in leaves, were higher in sprouts than in seedlings and adult trees. Symplasmic water content per unit leaf area was higher in sprouts than in seedlings. These water relation parameters in leaves indicated that sprout leaves are superior in maintaining cell turgor against water loss, but are not tolerant to water stress. In field measurements, sprout leaves showed higher stomatal conductance and transpiration rates. These results indicated that sprout leaves fully realized their high potential productivity even under field conditions. The leaf specific conductance, from the soil to the leaf, was higher in sprouts than in seedlings. Large and deep root systems of the original stumps of the sprouts may be attributed to the high leaf specific conductance.  相似文献   

2.
比较盆栽 生榕树和两栖型树的形态差异、叶片叶绿素含量、叶绿素荧光特性和气体交换的日变化。两栖型榕树具有较发达的气生根和水生不定根,叶片比陆生榕树宽,并有向中生性 倾向,陆生榕树的叶绿素含量比两栖榕树高,净光合速率略高于水培两栖型榕树,但明显高于土培两栖型榕树,蒸腾速率以水培两栖型树最高,陆生榕树次之,土培两栖型榕树最低,线性回归分析表明,三者的叶片气孔导度与净光合速率变化均呈正相关,气孔导度的变化  相似文献   

3.
Two experiments were conducted to examine the response of Quercus rubra L. seedlings to coppicing. In a greenhouse experiment, growth, biomass distribution, leaf gas exchange, and water and carbohydrate relations were measured for 1-year-old seedlings that were either coppiced when dormant at the time of planting or left intact as controls. Coppicing induced sprouting from the base of the stem, and, in general, the physiology of sprouts and controls was similar. However, the relative growth rate (RGR) of sprouts was 9% higher than that of controls, allowing sprouts to compensate fully for the initial mass lost to coppicing. In a second experiment, in an outdoor cold frame, growth, biomass distribution, leaf gas exchange and plant water relations were measured on 1-year-old seedlings that were either coppiced at the time of planting (dormant-coppiced), coppiced soon after bud break (active-coppiced) or left intact (controls). Dormant coppicing again had little impact on seedling physiology, and dormant-coppiced plants again compensated for initial mass loss with a higher RGR. In contrast, active-coppiced seedlings did not compensate for initial mass loss, as their RGR did not differ from that of controls. By the tenth week of the study, leaf gas exchange rates of active-coppiced sprouts were higher than those of dormant-coppiced and control seedlings. Active-coppiced sprouts also had a greater soil-to-leaf hydraulic conductivity (expressed on a leaf area basis) and a lower ratio of leaf area to root surface area than did controls. Across treatments, photosynthetic rate and stomatal conductance were positively correlated with soil-to-leaf hydraulic conductivity, and gas exchange rates and hydraulic conductivity were negatively related to leaf:root area ratio. Thus, the removal of actively growing shoots may have altered subsequent leaf gas exchange largely through coppice-induced changes in leaf-root balance.  相似文献   

4.
Emission from plants is a major source of atmospheric methanol. Growing tissues contribute most to plant-generated methanol in the atmosphere, but there is still controversy over biological and physico-chemical controls of methanol emission. Methanol as a water-soluble compound is thought to be strongly controlled by gas-phase diffusion (stomatal conductance), but growth rate can follow a different diurnal rhythm from that of stomatal conductance, and the extent to which the emission control is shared between diffusion and growth is unclear. Growth and methanol emissions from Gossypium hirsutum, Populus deltoides, and Fagus sylvatica were measured simultaneously. Methanol emission from growing leaves was several-fold higher than that from adult leaves. A pronounced diurnal rhythm of methanol emission was observed; however, this diurnal rhythm was not predominantly determined by the diurnal rhythm of leaf growth. Large methanol emission peaks in the morning when the stomata opened were observed in all species and were explained by release of methanol that had accumulated in the intercellular air space and leaf liquid pool at night in leaves with closed stomata. Cumulative daily methanol emissions were strongly correlated with the total daily leaf growth, but the diurnal rhythm of methanol emission was modified by growth rate and stomatal conductance in a complex manner. While in G. hirsutum and in F. sylvatica maxima in methanol emission and growth coincided, maximum growth rates of P. deltoides were observed at night, while maximum methanol emissions occurred in the morning. This interspecific variation was explained by differences in the share of emission control by growth processes, by stomatal conductance, and methanol solubilization in tissue water.  相似文献   

5.
苹果叶片气体交换日变化动态模拟   总被引:3,自引:1,他引:2  
高照全  李天红  张显川 《生态学报》2010,30(5):1258-1264
根据苹果叶片气体交换模型可模拟不同小气候条件下光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)的日变化。Pn和Gs在晴天呈现出不对称双峰曲线:上午增加,约8:00前后达到最大值,然后下降,到16:00左右时再升高到第2个峰值,最后再下降。Tr晴天的日变化与Pn和Gs相似,在晴天呈"n"字形曲线,但是Tr的午休现象较Pn和Gs轻,并且最大值出现在午后。晴天时WUE在太阳出来不久就达到了最大值,并迅速下降到一个比较稳定的水平,傍晚前后降到0。模型模拟表明气体交换的日变化主要是由太阳辐射驱动的,而午休现象主要是由叶水势和湿度的减少引起。根据在富士苹果园观测数据(Maluspumila Mill.Fuji;北纬40°13′,东经116°13′,海拔79m)对模型进行了验证。结果表明在不同的有效光合辐射、温度、湿度和CO2浓度下Pn的观测值和模拟值非常吻合,树冠上层叶片Pn和Gs日变化的实测值和模拟值也基本一致。Tr的模拟值略有高估,可能是由叶片的相互遮荫及Pn和有效光合辐射之间的非线性关系引起。  相似文献   

6.
This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic capacity of olive leaves. This work highlights the need for models of plant growth and ecosystem function to incorporate new parameters affecting the distribution of photosynthetic capacity in canopies.  相似文献   

7.
Kim SH  Lieth JH 《Annals of botany》2003,91(7):771-781
The following three models were combined to predict simultaneously photosynthesis, stomatal conductance, transpiration and leaf temperature of a rose leaf: the biochemical model of photosynthesis of Farquhar, von Caemmerer and Berry (1980, Planta 149: 78-90), the stomatal conductance model of Ball, Woodrow and Berry (In: Biggens J, ed. Progress in photosynthesis research. The Netherlands: Martinus Nijhoff Publishers), and an energy balance model. The photosynthetic parameters: maximum carboxylation rate, potential rate of electron transport and rate of triose phosphate utilization, and their temperature dependence were determined using gas exchange data of fully expanded, young, sunlit leaves. The stomatal conductance model was calibrated independently. Prediction of net photosynthesis by the coupled model agreed well with the validation data, but the model tended to underestimate rates of stomatal conductance and transpiration. The coupled model developed in this study can be used to assist growers making environmental control decisions in glasshouse production.  相似文献   

8.
黍气体交换对异质养分环境的反应   总被引:3,自引:0,他引:3       下载免费PDF全文
 比较了异质养分环境中黍(Panicum miliaceum)叶片气体交换和光合养分利用效率。异质养分环境显著影响黍叶片气体交换;繁殖前期叶片光合速率、蒸腾速率、气孔导度和水分利用效率随环境中总养分水平变化的趋势与种子成熟期恰好相反;光合速率、蒸腾速率和气孔导度与叶氮含量成显著相关,而与叶磷含量和叶钾含量无显著相关;光合磷利用效率和光合钾利用效率受异质养分环境的显著影响,而光合氮利用效率对异质养分环境无显著反应。  相似文献   

9.
利用大型移动防雨棚开展了玉米水分胁迫及复水试验,通过分析玉米叶片光合数据,揭示了不同生育期水分胁迫及复水对玉米光合特性及水分利用效率的影响。结果表明:水分胁迫导致玉米叶片整体光合速率、蒸腾速率和气孔导度下降以及光合速率日变化的峰值提前;水分胁迫后的玉米叶片蒸腾速率、光合速率和气孔导度为适应干旱缺水均较对照显著下降,从而提高了水分利用效率,缩小了与水分充足条件下玉米叶片的水分利用效率差值;在中度和重度水分胁迫条件下,玉米叶片的水分利用效率降幅低于光合速率、蒸腾速率和气孔导度的降幅, 有时甚至高于正常供水条件下的水分利用效率;适度的水分胁迫能提高玉米叶片的水分利用效率,从而增强叶片对水分的利用能力,抵御干旱的逆境;水分亏缺对玉米光合速率、蒸腾速率及水分利用效率的影响具有较明显滞后效应,干旱后复水,光合作用受抑制仍然持续;水分胁迫时间越长、胁迫程度越重,叶片的光合作用越呈不可逆性;拔节-吐丝期水分胁迫对玉米叶片光合作用的逆制比三叶-拔节期更难恢复。  相似文献   

10.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   

11.
We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.  相似文献   

12.
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms.  相似文献   

13.
胡杨叶片气孔导度特征及其对环境因子的响应   总被引:19,自引:2,他引:17  
依据2005年对极端干旱区荒漠河岸林胡杨的观测资料,对胡杨气孔运动进行了分析研究以揭示胡杨的水分利用特征与抗旱机理。结果表明:(1)胡杨叶片气孔导度日变化呈现为周期波动曲线,其波动周期为2 h,傍晚(20:00)波动消失;净光合速率和蒸腾速率与气孔导度的波动相对应而呈现同步周期波动。(2)胡杨的阳生叶气孔导度高于阴生叶,且不同季节气孔导度值不同,阳生叶气孔导度的季节变幅大于阴生叶。(3)胡杨气孔导度与气温、相对湿度和叶水势有显著相关关系,当CO2浓度较小时,胡杨气孔导度随CO2浓度的增加而增加,当CO2浓度达到一定值后气孔导度不再增加,反而随CO2浓度的增加大幅度降低。(4)胡杨适应极端干旱区生境的气孔调节机制为反馈式反应,即由于叶水势降低导致气孔导度减小,从而减少蒸腾耗水,达到节约用水、适应干旱的目的,表明胡杨的水分利用效率随气孔限制值的增大而减小,二者呈显著负相关。  相似文献   

14.
Fully expanded leaves of tomato (Lycopersicon esculentum) growing with either complete or nitrogen-deficient nutrient solution were analysed for leaf water status, gas exchange and chlorophyll fluorescence during the vegetative and reproductive phases. N-deficiency did not affect leaf water relations but did decrease light saturated photosynthetic rate as well as stomatal conductance in the vegetative stage. A lower variable to maximum fluorescence ratio (Fv/Fm) was found in N-limited plants which also showed an increase in leaf starch content and in starch to sucrose ratio. The inhibition of photosynthesis and the alteration of photosynthates partitioning were responsible for the growth reduction in N-stressed plants. During the reproductive phase the limitation of photosynthesis may be due to a large accumulation of starch which determines both a decrease in the carbon demand from the sinks and a decrease in CO2 conductance in the mesophyll. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Xylella fastidiosa is a xylem‐limited bacterial plant pathogen that causes bacterial leaf scorch in its hosts. Our previous work showed that water stress enhances leaf scorch symptom severity and progression along the stem of a liana, Parthenocissus quinquefolia, infected by X. fastidiosa. This paper explores the photosynthetic gas exchange responses of P. quinquefolia, with the aim to elucidate mechanisms behind disease expression and its interaction with water stress. We used a 2 × 2‐complete factorial design, repeated over two growing seasons, with high and low soil moisture levels and infected and non‐infected plants. In both years, low soil moisture levels reduced leaf water potentials, net photosynthesis and stomatal conductance at all leaf positions, while X. fastidiosa‐infection reduced these parameters at basally located leaves only. Intercellular CO2 concentrations were reduced in apical leaves, but increased at the most basal leaf location, implicating a non‐stomatal reduction of photosynthesis in leaves showing the greatest disease development. This result was supported by measured reductions in photosynthetic rates of basal leaves at high CO2 concentrations, where stomatal limitation was eliminated. Repeated measurements over the summer of 2000 showed that the effects of water stress and infection were progressive over time, reaching their greatest extent in September. By reducing stomatal conductances at moderate levels of water stress, P. quinquefolia maintained relatively high leaf water potentials and delayed the onset of photosynthetic damage due to pathogen and drought‐induced water stress. In addition, chlorophyll fluorescence measurements showed that P. quinquefolia has an efficient means of dissipating excess light energy that protects the photosynthetic machinery of leaves from irreversible photoinhibitory damage that may occur during stress‐induced stomatal limitation of photosynthesis. However, severe stress induced by disease and drought eventually led to non‐stomatal decreases in photosynthesis associated with leaf senescence.  相似文献   

16.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

17.
This 2-year field study examined stomatal conductance, photosynthesis, and biomass allocation of Liquidambar styraciflua saplings in response to below- and aboveground competition with the vines Lonicera japonica and Parthenocissus quinquefolia. Vine competition did not affect stomatal conductance of the host trees. The leaf photosynthetic capacity and photosynthetic nitrogen-use efficiency were significantly reduced by root competition with vines, either singly or in combination with aboveground competition, early in the second growing season. However, such differences disappeared by the end of the second growing season. Trees competing below ground with vines also had lower allocation to leaves compared with steins. Aboveground competition with vines resulted in reduced photosynthetic capacity per unit leaf area, but not per unit leaf weight, in trees. No correlation was found between single leaf photosynthetic capacity and tree growth. In contrast, a high positive correlation existed between allocation to leaves and diameter growth. Results from this study suggest that allocation patterns are more affected than leaf photosynthesis in trees competing with vines.  相似文献   

18.
Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi‐steady‐state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light‐induced stomatal opening, activation of photosynthesis and features of quasi‐steady‐state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi‐steady‐state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water‐use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species‐independent scaling relationships over the range of isohydry to anisohydry observed.  相似文献   

19.
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (Ψ) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO2 during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 °C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO2 assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.  相似文献   

20.
The response of adaxial and abaxial stomatal conductance in Rumex obtusifolius to growth at elevated atmospheric concentrations of CO2 (250 μmol mol?1 above ambient) was investigated over two growing seasons. The conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated concentrations of CO2. Elevated CO2 caused a much greater reduction in conductance for the adaxial surface than for the abaxial surface. The absence of effects upon stomatal density indicated that the reductions were probably the result of changes in stomatal aperture. Partitioning of gas exchange between the leaf surfaces revealed that increased concentrations of CO2 caused increased rates of photosynthesis only via the abaxial surface. Additionally, leaf thickness was found to increase during growth at elevated concentrations of CO2. The tendency for these amphistomatous leaves to develop a distribution of conductance approaching that of hypostomatous leaves clearly reduced their maximum photosynthetic potential. This conclusion was supported by measurements of stomatal limitation, which showed greater values for the adaxial surfaces, and greater values at elevated CO2. This reduction in photosynthesis may in part be caused by higher diffusive limitations imposed because of increased leaf thickness. In an uncoupled canopy, asymmetrical stomatal responses of the kind identified here may appreciably reduce transpiration. Species which show symmetrical responses are less likely to show reduced transpirational rates, and a redistribution of water loss between species may occur. The implications of asymmetrical stomatal responses for photosynthesis and canopy transpiration are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号