共查询到20条相似文献,搜索用时 0 毫秒
1.
《Inorganica chimica acta》1988,142(2):219-221
The compounds [MI2(CO)3(NCMe)2] (M = Mo or W) react with one equivalent of SC(NH2)Me in CH2Cl2 at room temperature to initially give the acetonitrile substituted products [MI2(CO)3(NCMe)- {SC(NH2)Me}] which was isolated for M = W. However, the molybdenum complex rapidly dimerizes with loss of acetonitrile to give the iodide-bridged compound [Mo(σ-I)I(CO)3 {SC(NH2)Me}]2. The tungsten complex does not appear to dimerize, even after stirring at room temperature for 72 h in CH2Cl2. Two equivalents of thioacetamide react with [MI2- (CO)3(NCMe)2] in CH2Cl2 at room temperature to give the new bisthioacetamide compounds [MI2- (CO)3{SC(NH2)Me}2] via displacement of the labile acetonitrile ligands. The low temperature (−70 °C) 13C NMR spectrum of [WI2(CO)3{SC(NH2)Me}2] indicates that the geometry of the complex is capped octahedral with a carbonyl ligand in the unique capping position. 相似文献
2.
Oxidative addition of 1-bromo-1H-indene to [Mo(CO)3(NCMe)3] and [W(CO)3(NCEt)3] is a suitable method for preparation of the indenyl compounds [IndMo(CO)3Br] and [IndW(CO)3Br], respectively. These products were fully characterised using spectroscopic methods. Structure of [IndW(CO)3Br] was determined by single crystal X-ray diffraction analysis. 相似文献
3.
Stefan Dilsky Jacob A. Rubin Robert D. Pike Joseph M. Keane 《Inorganica chimica acta》2007,360(7):2387-2396
A variety of Group 6 mono bipyridine (bpy) complexes were prepared, and substitution reactions of [(bpy)(MeIm)M(CO)2(NO)]PF6 complexes (MeIm = 1-methylimidazole, M = W or Mo) were investigated. Nitrosylation of complexes having the general formula (bpy)(L)M(CO)3 (L = a variable ligand) gave cationic complexes of the form [(bpy)(L)M(CO)2(NO)]PF6. The structure of [(bpy)(MeIm)W(CO)2(NO)]PF6 was confirmed by single-crystal X-ray diffractometry. [(bpy)(MeIm)M(CO)2(NO)]PF6 complexes undergo facile substitutions with mono-, tri- and tetra-dentate ligands, yielding di- or mono-carbonyl mononitrosyl complexes. The structures of [(bpy)(PMe3)2W(CO)(NO)]PF6 and [(dien)(PMe3)W(CO)(NO)]PF6 (dien = diethylenetriamine) were determined by X-ray diffraction. 相似文献
4.
5.
6.
Thermally initiated exothermic intramolecular redox reactions of [M(NO)2Cl2]n and M(NO)2CL2L2 (where M = Mo or W; L = PPh3AsPh3 or OPPh3) type complexes were observed at definite temperatures. In these reactions the coordinated NO oxidizes M or L and N2O or N2 containing gases are formed. Thermal analysis was found to be a reliable supplementary method to differentiate between phosphine and phosphine oxide substituted halo nitrosyl complexes. 相似文献
7.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2′:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes. 相似文献
8.
Jing Han 《Inorganica chimica acta》2006,359(1):99-108
Four novel Mo(II) and Rh(II) complexes with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene (cis-dbe) or closed-dbe were synthesized and characterized. Employing [M(O2CCF3)4] (M = Mo, Rh) with cis-dbe or closed-dbe afforded complex [Mo2(O2CCF3)4(cis-dbe)](benzene) (1), [Rh2(O2CCF3)4(cis-dbe)](benzene) (2), [{Mo2(O2CCF3)4}2(closed-dbe)] (3), and [Rh2(O2CCF3)4(closed-dbe)](p-xylene) (4). The structures of four metal complexes were revealed by X-ray crystallographic analyses and the correlation between the crystal structures and the photochromic performance was discussed. In all complexes, two cyano groups of the ligand bridged two dimetal carboxylates to give a 1-D zigzag infinite chain structure. Upon irradiation with 405 nm light, complex 1 turned into reddish purple from yellow, and the color reverted to initial yellow on exposure to 563 nm light, indicating the reversible cyclization/ring-opening reaction in the crystalline phase. However, the Rh(II) complex 2 did not display similarities in reaction induced by light, which is attributable to the lower ratio of photoactive anti-parallel conformers compared with complex 1 and coordination effect of metal ions on photochromism of diarylethenes. The complexes of Rh(II) ions did not exhibit the expected reversible photoinduced behavior. 相似文献
9.
10.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies. 相似文献
11.
By using multinuclear (1H, 13C, 17O, 95Mo, 183W) magnetic resonance spectroscopy (1D and 2D), D-gulonic acid is found to form ten and seven complexes, respectively, with tungsten(VI) and molybdenum(VI), in aqueous solution, depending on pH and metal-ligand molar ratios. Two isomeric 1:2 (metal-ligand) complexes involving the carboxylate and the adjacent OH group are present in the pH range 2-9. At intermediate and high pH, molybdate forms a 2:1 tetradentate complex involving the four secondary hydroxyl groups, whereas tungstate forms one 2:1 terdentate species. At low and intermediate pH values, three 2:1 complexes are found for both metals, involving the carboxylate group and three secondary hydroxyl groups, as well as a 5:2 species involving the carboxylate group and all the secondary hydroxyl groups; the concentration of this species increases in time mainly at the expense of 2:1 and 1:2 complexes. Tungstate can also form two additional species, probably a 5:2 species involving the carboxylate group and all the hydroxyl groups, and a 2:1 pentadentate species involving the carboxylate group and all the secondary hydroxyl groups. In alkaline solutions, tungstate is able to form an additional 2:1 pentadentate complex involving all the hydroxyl groups. 相似文献
12.
Condensation reaction of 2,9-dicarboxaldehyde-1,10-phenanthroline with 2-aminoethanol followed by NaBH4 reduction yielded the polydentate Schiff base ligand 2,9-bis(ethanolamine)-1,10-phenanthroline in its reduced form. This ligand was characterized by elemental analysis, LC-MS, IR, UV-Vis and NMR spectroscopy. Reaction of the reduced Schiff base ligand with aqueous solution of cobalt(II) chloride affords 2,9-bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride in high yield. Single crystals of the cobalt(II) complex were obtained from the crystallization in ethanol and its structure was elucidated by X-ray structural analysis. The cobalt(II) complex ion was found to be seven-coordinated in a pentagonal bipyramidal geometry, whereby cobalt(II) ion is surrounded by the six donor atoms in the ligand molecule and a chloride ion. 相似文献
13.
《Inorganica chimica acta》1986,119(2):203-205
Reactions of cis-diaminediaqua palladium and platinum dinitrates and of trans-diaminediaqua platinum dinitrate give complexes of the type Pd(tmeda)(OH)(C4O4)Pd(tmeda)(C4O4H) (tmeda = tetramethylethylenediamine) (1), (en)M(C4O4)2M(en) (en = ethylenediamine (M = Pd, Pt) and trans-[Pt- (NH3)2C4O4]n, respectively. The structures of these compounds are discussed on the basis of their spectroscopic data. 相似文献
14.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH≠ = 13.4 ± 0.4 kcal mol−1, ΔS≠ = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH≠ = 12.3 ± 0.3 kcal mol−1, ΔS≠ = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed. 相似文献
15.
A new series of dinuclear squarato-bridged nickel(II) and copper(II) complexes [Ni2(2,3,2-tet)2(μ1,3-C4O4)(H2O)2](ClO4)2 (1), [Ni2(aepn)2(μ1,3-C4O4)(H2O)2](ClO4)2 (2), [Cu2(pmedien)2(μ1,3-C4O4)(H2O)2](ClO4)2.4H2O (3) and [Cu2(DPA)2(μ1,2-C4O4)(H2O)2](ClO4)2 (4) where is the dianion of 3,4-dihydroxycyclobut-3-en-1,2-dione (squaric acid), 2,3,2-tet = 1,4,8,11-tetraazaundecane, aepn = N-(2-aminoethyl)-1,3-propanediamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine and DPA = di(2-pyridylmethyl)amine were synthesized and structurally characterized by X-ray crystallography. The spectral and structural characterization as well as the magnetic behaviour of these complexes is reported. In this series, structures consist of the groups as counter ions and the bridging the two M(II) centers in a μ-1,3- (1-3) and in a μ-1,2-bis(monodentate) (4) bonding fashions. The coordination geometry around the Ni(II) ions in 1 and 2 is six-coordinate with distorted octahedral environment achieved by N atoms of the amines and by one or two oxygen atoms from coordinated water molecules, respectively. In the Cu(II) complexes 3 and 4, a distorted square pyramidal geometry is achieved by the three N-atoms of the aepn or DPA and by an oxygen atom from a coordinated water molecule. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the M(II) centers. The complexes show weak antiferromagnetic coupling with ∣J∣ = 1.8-4.2 cm−1 in the μ-1,3- bridged squarato compounds 1-3, and J = −16.1 cm−1 in the corresponding μ-1,2- bridged squarato complex 4. The magnetic properties are discussed in relation to the structural data. 相似文献
16.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd3(μ3-3)2(dppp)3](OTf)6. 相似文献
17.
The molybdenum and tungsten dinitrogen-organonitrile complexes trans-[M(N2)(NCR)(dppe)2] (2, M=Mo; 4, M=W; R=Ph, C6H4Me-p, C6H4OMe-p, Me; dppe=Ph2PCH2CH2PPh2) underwent double protonation at the nitrile carbon atom with loss of N2 and a change in oxidation state to +4 on treatment with hydrochloric acid to afford the cationic imido complexes trans-[MCl(NCH2R)(dppe)2]+. The solid-state structure of trans-[WCl(NCH2CH3)(dppe)2][PF6]·CH2Cl2 was determined by single-crystal X-ray analysis. Protonation of complexes 2 by fluoroboric acid or hydrobromic acid also formed the similar imido complexes trans-[MoX(NCH2R)(dppe)2]+ (X=F, Br). In contrast, the dinitrogen complex trans-[Mo(N2)2(dppe)2] reacted with two equiv. of benzoylacetonitrile, a nitrile with acidic CH hydrogen atoms, to give the nitrido complex trans-[Mo(N)(NKCCHCOPh)(dppe)2] (12), which was accompanied by evolution of dinitrogen and the formation of 1-phenyl-2-propen-1-one in high yields. For complex 12, the zwitterionic structure, where the anionic enolate ligand PhC(O+)=CHCN coordinates to the cationic Mo(IV) center through its nitrogen atom, was confirmed by spectroscopic measurements and single-crystal X-ray analysis. A unique intermolecular aromatic C---HO hydrogen bonding was observed in that crystal structure. Complex 12 is considered to be formed via the cleavage of the CN triple bond of benzoylacetonitrile on the metal. A reaction mechanism is proposed, which includes the double protonation of the nitrile carbon atom of the ligating benzoylacetonitrile on a low-valent molybdenum center. 相似文献
18.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4− counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl). 相似文献
19.
Copper(II) cations coordinated with PMDTA (pentamethyldiethylenetriamine) and TMEDA (tetramethylethylenediamine) possess a high synthetic potential. The synthesis of these cations was carried out by metathesis reactions with silver salts. The cationic copper(II) complexes, [Cu(PMDTA)(Me2CO)Cl]+, [Cu(PMDTA)(H2O)Cl]+, [Cu(PMDTA)(DMF)]+, [Cu(PMDTA)Cl]+, [Cu(PMDTA)OAc]+, [Cu(PMDTA)(MeCN)2]2+, [Cu2(TMEDA)2Cl3]+ and [Cu(TMEDA)(MeCN)3]2+ were synthesised as PF6 salts, crystallised and characterised by single-crystal X-ray diffraction. 相似文献
20.
The formation of cationic palladium(II)complexes [TrpyPdII]+X− by salt metathesis of the respective trifluoroacetates with different salts of weakly coordinating anions X− was investigated. With non-hydrolizable counterions, cationic mono- and dinuclear complexes are observed depending on the nature of the anion X− and the solvent. The mononuclear cations, which are only formed with X = BArF, most probably carry a weakly bound molecule of dichloromethane at the fourth coordination site of PdII. When treated with diazoalkanes, only these are sufficiently reactive to form carbene complexes. Four- and five coordinate Lewis base adducts [TrpyPdIIL]+ with L = CH3NC, tBuNH2, PMe3, PEt3 and PiPr3 and [TrpyPdIIL2]+ with L = PMe3 were prepared from the mononuclear cations [TrpyPdII]+BArF−. From structural studies it becomes apparent, that the formation of stable five coordinate PdII species is restricted to medium size ligands and depends on the delicate balance between the steric influence of L and the strain, which is induced on the TrpyPdII unit. 相似文献