共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan Y Liu J McCallum SA Yang D Wang C 《Biochemical and biophysical research communications》2007,362(2):410-414
To probe the role of side chain dynamics in Abeta aggregation, we studied the methyl dynamics of native Abeta40 and Abeta42 by measuring cross relaxation rates with interleaved data collection. The methyl groups in the C-terminus are in general more rigid in Abeta42 than in Abeta40, consistent with previous results from backbone (15)N dynamics. This lends support to the hypothesis that a rigid C-terminus in Abeta42 may serve as an internal aggregation seed. Interestingly, two methyl groups of V18 located in the central hydrophobic cluster are more mobile in Abeta42 than in Abeta40, most likely due to the paucity of V18 intra-molecular interactions in Abeta42. V18 may then be more available for inter-molecular interactions to form Abeta42 aggregates. Thus, the side chain mobility of the central hydrophobic cluster may play an important role in Abeta aggregation and may contribute to the difference in aggregation propensity between Abeta40 and Abeta42. 相似文献
2.
Abeta42 is more rigid than Abeta40 at the C terminus: implications for Abeta aggregation and toxicity 总被引:1,自引:0,他引:1
Abeta40 and Abeta42 are the major forms of amyloid beta peptides (Abeta) in the brain. Although Abeta42 differs from Abeta40 by only two residues, Abeta42 is much more prone to aggregation and more toxic to neurons than Abeta40. To probe whether dynamics contribute to such dramatic difference in function, backbone ps-ns dynamics of native Abeta monomers were characterized by 15N spin relaxation at 273.3 K and 800 MHz. Abeta42 aggregates much faster than Abeta40 in the NMR tube. The effect of Abeta aggregation was removed from the relaxation measurement by interleaved data collection. R1, R2 and nuclear Overhauser enhancement (NOE) values are similar in Abeta40 and Abeta42, except at the C terminus, indicating Abeta42 and Abeta40 monomers have identical global motions. Comparisons of the spectral density function J(0.87omegaH) and order parameters (S2) indicate that the Abeta42 C terminus is more rigid than the Abeta40 C terminus. At 280.4 K and 287.6 K, the Abeta42 C terminus remains more rigid than the Abeta40 C terminus, suggesting such a dynamical difference is likely present at the physiological temperature. The Abeta42 monomer likely has less configurational entropy due to restricted motion in the C terminus and may pay a smaller entropic price to form fibrils than the Abeta40 monomer. We hypothesize that the entropic difference between Abeta40 and Abeta42 monomers might partly account for the fact that Abeta42 is the major Abeta species in parenchymal senile plaques in most Alzheimer's diseased brains in spite of the predominance of Abeta40 in plasma. The increased rigidity of the Abeta42 C terminus is likely due to its pre-ordering for beta-conformation present in soluble oligomers and fibrils. The Abeta42 C terminus may therefore serve as an internal seed for aggregation. 相似文献
3.
Jan A Gokce O Luthi-Carter R Lashuel HA 《The Journal of biological chemistry》2008,283(42):28176-28189
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease. 相似文献
4.
Schulz B Liebisch G Grandl M Werner T Barlage S Schmitz G 《Biochimica et biophysica acta》2007,1771(10):1335-1344
Apart from its role as a risk factor in arteriosclerosis, plasma cholesterol is increasingly recognized to play a major role in the pathogenesis of Alzheimer's disease (AD). Moreover, alterations of intracellular cholesterol metabolism in neuronal and vascular cells are of considerable importance for the understanding of AD. Cellular cholesterol accumulation enhances the deposition of insoluble beta-amyloid peptides, which is considered a hallmark in the pathogenesis of AD. In order to test the hypothesis, whether exogenous beta-amyloid peptides (Abeta42, Abeta40) might contribute to cellular cholesterol accumulation by opsonization of lipoproteins, we compared the binding and uptake of native LDL, enzymatically modified LDL (E-LDL), copper oxidized LDL (Ox-LDL) and HDL as control, preincubated either in the absence or presence of Abeta42 or Abeta40, by human monocytes or monocyte-derived macrophages. Incubation of monocytes and macrophages with Abeta-lipoprotein-complexes lead to increased cellular free and esterified cholesterol when compared to non-opsonized lipoproteins, except for HDL. Furthermore, the cellular uptake of these complexes regulated Abeta-receptors such as FPRL-1 or LRP/CD91. In summary, our results suggest that Abeta42 and Abeta40 act as potent opsonins for LDL, E-LDL and Ox-LDL and enhance cellular cholesterol accumulation as well as Abeta-deposition in vessel wall macrophages. 相似文献
5.
Apolipoprotein E and low density lipoprotein receptor-related protein facilitate intraneuronal Abeta42 accumulation in amyloid model mice 总被引:2,自引:0,他引:2
Zerbinatti CV Wahrle SE Kim H Cam JA Bales K Paul SM Holtzman DM Bu G 《The Journal of biological chemistry》2006,281(47):36180-36186
The low density lipoprotein receptor-related protein (LRP) is highly expressed in the brain and has been shown to alter the metabolism of amyloid precursor protein and amyloid-beta peptide (Abeta) in vitro. Previously we developed mice that overexpress a functional LRP minireceptor (mLRP2) in their brains and crossed them to the PDAPP mouse model of Alzheimer disease. Overexpression of mLRP2 in 22-month-old PDAPP mice with amyloid plaques increased a pool of carbonate-soluble Abeta in the brain and worsened memory-related behavior. In the current study, we examined the effects of mLRP2 overexpression on 3-month-old PDAPP mice that had not yet developed amyloid plaques. We found significantly higher levels of membrane-associated Abeta42 in the hippocampus of mice that overexpressed mLRP2. Using immunohistochemical methods, we observed significant intraneuronal Abeta42 in the hippocampus and frontal cortex of PDAPP mice, which frequently co-localized with the lysosomal marker LAMP-1. Interestingly, PDAPP mice lacking apolipoprotein E (apoE) had much less intraneuronal Abeta42. We also found that PC12 cells overexpressing mLRP2 cleared Abeta42 and Abeta40 more rapidly from media than PC12 cells transfected with the vector only. Preincubation of apoE3 or apoE4 with Abeta42 increased the rate of Abeta clearance, and this effect was partially blocked by receptor-associated protein. Our results support the hypothesis that LRP binds and endocytoses Abeta42 both directly and via apoE but that endocytosed Abeta42 is not completely degraded and accumulates in intraneuronal lysosomes. 相似文献
6.
Human but not rat amylin shares neurotoxic properties with Abeta42 in long-term hippocampal and cortical cultures 总被引:1,自引:0,他引:1
Type 2 diabetes mellitus (DM) and Alzheimer's disease (AD) share epidemiological and biochemical features. Both are characterized by insoluble protein aggregates with a fibrillar conformation--amylin in Type 2 DM pancreatic islets, and Abeta in AD brain. To determine whether amylin shares neurotoxic properties with Abeta, we incubated hippocampal and cortical neurons with Abeta42 and human amylin. Different from non-amyloidogenic rat amylin, both caused a dose-, time- and cell type-specific neurotoxicity supporting the notion of a similar toxic mechanism. Depending on the cell type, this finding is also supported by co-incubation of human amylin and Abeta. 相似文献
7.
W Born M Freeman G N Hendy A Rapoport A Rich J T Potts H M Kronenberg 《Molecular endocrinology (Baltimore, Md.)》1987,1(1):5-14
cDNA encoding human preproPTH (hpreproPTH) was expressed in Escherichia coli to study the processing of the precursor to hPTH and its secretion by the bacterial secretory apparatus. We first constructed hybrid genes that differed randomly in the distance between the E. coli lac promoter's ribosomal binding site and DNA encoding a fusion protein with beta-galactosidase activity and the prepro sequence of hpreproPTH on the aminoterminus. Starting with clones identified as efficient producers of beta-galactosidase on indicator agar plates, the coding sequence for hpreproPTH was reconstituted intact. In a different construction we placed the hpreproPTH coding sequence downstream from the lac promoter at a distance of 12 base pairs from the ribosomal binding site. PTH immunoreactive proteins from multiple clones were identified by protein gel electrophoresis and by protein microsequencing. PTH-related proteins encoded by different plasmids were shown to be hpreproPTH with amino-terminal extensions of either two or four amino acids and as authentic hpreproPTH. Two hPTH fragments, hPTH(3-84) and hPTH(8-84), were also observed. The trypsin accessibility of hpreproPTH and of the two hPTH fragments in pulse-chase, cell-fractionation experiments using intact and lysed spheroplasts lets us conclude that the mammalian signal sequence directs hpreproPTH to the surface of the spheroplast membrane but is not appropriately cleaved by the signal peptidase. 相似文献
8.
Oxidative lipid membrane damage is known to promote the misfolding of Abeta42 into pathological beta structure. In fully developed senile plaques of Alzheimer's disease, however, it is the shorter and more soluble amyloid beta protein, Abeta40, that predominates. To investigate the role of oxidative membrane damage in the misfolding of Abeta40, we have examined its interaction with supported lipid monolayer membranes using internal reflection infrared spectroscopy. Oxidatively damaged lipids modestly increased Abeta40 accumulation, with adsorption kinetics and a conformation that are distinct from that of Abeta42. In stark contrast, pretreatment of oxidatively damaged monolayer membranes with Abeta42 vigorously promoted Abeta40 accumulation and misfolding. Pretreatment of saturated or undamaged membranes with Abeta42 had no such effect. Parallel studies of lipid bilayer vesicles using a dye binding assay to detect fibril formation and electron microscopy to examine morphology demonstrated that Abeta42 pretreatment of oxidatively damaged membranes promoted the formation of mature Abeta40 amyloid fibrils. We conclude that oxidative membrane damage and Abeta42 act synergistically at an early stage to promote fibril formation by Abeta40. This synergy could be detected within minutes using internal reflection spectroscopy, whereas a dye-binding assay required several days and much higher protein concentrations to demonstrate this synergy. 相似文献
9.
Mutational analyses of Epstein-Barr virus glycoprotein 42 reveal functional domains not involved in receptor binding but required for membrane fusion 下载免费PDF全文
Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with malignancies of both epithelial and lymphoid origin. Efficient infection of the latent host reservoir B lymphocytes involves the binding of glycoproteins gp350/220 for initial attachment, followed by the concerted action of gH, gL, gB, and gp42 for membrane fusion. The type II membrane protein gp42 is required for infection of B cells and assembles into a complex with gH and gL. The cellular host receptor for gp42, class II human leukocyte antigen (HLA), has been structurally verified by crystallization analyses of gp42 bound to HLA-DR1. Interestingly, the crystal structure revealed a hydrophobic pocket consisting of many aromatic and aliphatic residues from the predicted C-type lectin domain of gp42 that in other members of the C-type lectin family binds major histocompatibility complex class I or other diverse ligands. Although the hydrophobic pocket does not bind HLA class II, mutational analyses presented here indicate that this domain is essential for EBV-induced membrane fusion. In addition, mutational analysis of the region of gp42 contacting HLA class II in the gp42-HLA-DR1 cocrystal confirms that this region interacts with HLA class II and that this interaction is also important for EBV-induced membrane fusion. 相似文献
10.
Sawamura N Morishima-Kawashima M Waki H Kobayashi K Kuramochi T Frosch MP Ding K Ito M Kim TW Tanzi RE Oyama F Tabira T Ando S Ihara Y 《The Journal of biological chemistry》2000,275(36):27901-27908
The N141I mutation in presenilin (PS) 2 is tightly linked with a form of autosomal dominant familial Alzheimer's disease in the Volga German families. We previously reported that mouse brains harboring mutant PS2 contained increased levels of amyloid beta protein (Abeta) 42 in the Tris-saline-soluble fraction (Oyama, F., Sawamura, N., Kobayashi, K., Morishima-Kawashima, M., Kuramochi, T., Ito, M., Tomita, T., Maruyama, K., Saido, T. C., Iwatsubo, T., Capell, A., Walter, J., Grünberg, J., Ueyama, Y., Haass, C. and Ihara, Y. (1998) J. Neurochem. 71, 313-322). Here, using a new extraction protocol, we quantitated the Abeta40 and Abeta42 levels in the Tris-saline-insoluble fraction. The insoluble Abeta levels were found to be higher than the soluble Abeta levels, and the insoluble Abeta42 levels were markedly increased in mutant PS2 transgenic mice. To investigate the origin of the insoluble Abeta42, we prepared the detergent-insoluble, low density membrane fraction. This fraction from two independent lines of mutant PS2 transgenic mice contained remarkably increased levels of Abeta42 and significantly low levels of glycerophospholipids and sphingomyelin. This unexpected finding suggests that a large increase in the levels of Abeta42 in mutant PS2 mice is presumably induced through alterations of the lipid composition in the low density membrane domain in the brain. 相似文献
11.
We studied the plasma beta carotene concentrations in 40 Alzheimer's disease patients and the association with cerebrospinal fluid beta-amyloid 1-40, (Abeta40), cerebrospinal fluid beta-amyloid 1-42 (Abeta42) and cerebrospinal fluid total Tau. We found that patients with plasma beta carotene levels below the 25th percentile had 55% reduced ratios of Abeta40/Tau and 51% reduced ratios of Abeta 40/Abeta 42 compared with patients in the highest quartile. Mean Tau concentrations in the lowest quartile of plasma beta-carotene levels were 74% higher compared with the highest quartile of plasma beta-carotene levels. Thus, we could demonstrate an statistically significant association between beta carotene levels in plasma and neurochemical markers in the cerebrospinal fluid of Alzheimer's disease patients. 相似文献
12.
Boren J Lookene A Makoveichuk E Xiang S Gustafsson M Liu H Talmud P Olivecrona G 《The Journal of biological chemistry》2001,276(29):26916-26922
Lipoprotein lipase (LPL) efficiently mediates the binding of lipoprotein particles to lipoprotein receptors and to proteoglycans at cell surfaces and in the extracellular matrix. It has been proposed that LPL increases the retention of atherogenic lipoproteins in the vessel wall and mediates the uptake of lipoproteins in cells, thereby promoting lipid accumulation and plaque formation. We investigated the interaction between LPL and low density lipoproteins (LDLs) with special reference to the protein-protein interaction between LPL and apolipoprotein B (apoB). Chemical modification of lysines and arginines in apoB or mutation of its main proteoglycan binding site did not abolish the interaction of LDL with LPL as shown by surface plasmon resonance (SPR) and by experiments with THP-I macrophages. Recombinant LDL with either apoB100 or apoB48 bound with similar affinity. In contrast, partial delipidation of LDL markedly decreased binding to LPL. In cell culture experiments, phosphatidylcholine-containing liposomes competed efficiently with LDL for binding to LPL. Each LDL particle bound several (up to 15) LPL dimers as determined by SPR and by experiments with THP-I macrophages. A recombinant NH(2)-terminal fragment of apoB (apoB17) bound with low affinity to LPL as shown by SPR, but this interaction was completely abolished by partial delipidation of apoB17. We conclude that the LPL-apoB interaction is not significant in bridging LDL to cell surfaces and matrix components; the main interaction is between LPL and the LDL lipids. 相似文献
13.
Wolfe MS 《EMBO reports》2007,8(2):136-140
More than 100 missense mutations in presenilin 1 and 2 are associated with early-onset dominant Alzheimer disease. These proteins span the membrane several times and are ostensibly the catalytic component of the gamma-secretase complex, which is responsible for producing the amyloid beta-peptide (Abeta) that deposits in the Alzheimer brain. A common outcome of Alzheimer-associated presenilin mutations is an increase in the ratio of the more aggregation-prone 42-residue form of Abeta to the 40-residue variant, which is often referred to as a presenilin 'gain of function'. An apparent paradox is that most of these mutant presenilins have reduced proteolytic efficiency, which forms part of the counter argument that presenilin 'loss of function' can cause the neuronal dysfunction and death that lead to the disease. In this review, a unifying hypothesis is presented that puts forward a biochemical mechanism by which slower less-efficient forms of the protease can result in a greater proportion of 42-residue Abeta. 相似文献
14.
The protein bcl-2 alpha does not require membrane attachment, but two conserved domains to suppress apoptosis 总被引:16,自引:2,他引:16 下载免费PDF全文
《The Journal of cell biology》1994,126(4):1059-1068
15.
Cell membrane, but not circulating, carcinoembryonic antigen is linked to a phosphatidylinositol-containing hydrophobic domain 总被引:4,自引:0,他引:4
F Jean P Malapert G Rougon J Barbet 《Biochemical and biophysical research communications》1988,155(2):794-800
Carcinoembryonic antigen is present in the cell membrane of most tumors of colorectal origin and in the plasma of patients with colorectal cancer and other malignancies. In this paper we demonstrate that carcinoembryonic antigen can be released from HT-29 cells by phosphatidylinositol specific phospholipase C. Triton X-114 phase separation shows that phospholipase C converts the antigen into a water soluble protein. In addition, plasma carcinoembryonic antigen behaves as the cleaved antigen in phase separation experiments. This strongly suggests that carcinoembryonic antigen is attached to cell membranes by a glycosyl-phosphatidylinositol anchor and that it can be released in vivo by enzymatic cleavage of the hydrophobic tail. 相似文献
16.
Wiltfang J Esselmann H Bibl M Hüll M Hampel H Kessler H Frölich L Schröder J Peters O Jessen F Luckhaus C Perneczky R Jahn H Fiszer M Maler JM Zimmermann R Bruckmoser R Kornhuber J Lewczuk P 《Journal of neurochemistry》2007,101(4):1053-1059
Neurochemical dementia diagnostics (NDD) can significantly improve the clinically based categorization of patients with early dementia disorders, and the cerebrospinal fluid (CSF) concentrations of amyloid beta peptides ending at the amino acid position of 42 (A beta x-42 and A beta 1-42) are widely accepted biomarkers of Alzheimer's disease (AD). However, in subjects with constitutively high- or low-CSF concentrations of total A beta peptides (tA beta), the NDD interpretation might lead to erroneous conclusions as these biomarkers seem to correlate better with the total A beta load than with the pathological status of a given patient in such cases. In this multicenter study, we found significantly increased CSF concentrations of phosphorylated Tau (pTau181) and total Tau in the group of subjects with high CSF A beta x-40 concentrations and decreased A beta x-42/x-40 concentration ratio compared with the group of subjects with low CSF A beta x-40 and normal A beta ratio (p<0.001 in both cases). Furthermore, we observed significantly decreased A beta ratio (p<0.01) in the group of subjects with APOE epsilon 4 allele compared with the group of subjects without this allele. Surprisingly, patients with low-A beta x-40 and the decreased A beta ratio characterized with decreased pTau181 (p<0.05), and unaltered total Tau compared with the subjects with high A beta x-40 and the A beta ratio in the normal range. We conclude that the amyloid beta concentration ratio should replace the 'raw' concentrations of corresponding A beta peptides to improve reliability of the neurochemical dementia diagnosis. 相似文献
17.
McGowan E Pickford F Kim J Onstead L Eriksen J Yu C Skipper L Murphy MP Beard J Das P Jansen K Delucia M Lin WL Dolios G Wang R Eckman CB Dickson DW Hutton M Hardy J Golde T 《Neuron》2005,47(2):191-199
Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels. 相似文献
18.
Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome 总被引:34,自引:0,他引:34
Amyloid-beta (Abeta) plaques and neurofibrillary tangles are the hallmark neuropathological lesions of Alzheimer's disease (AD). Using a triple transgenic model (3xTg-AD) that develops both lesions in AD-relevant brain regions, we determined the consequence of Abeta clearance on the development of tau pathology. Here we show that Abeta immunotherapy reduces not only extracellular Abeta plaques but also intracellular Abeta accumulation and most notably leads to the clearance of early tau pathology. We find that Abeta deposits are cleared first and subsequently reemerge prior to the tau pathology, indicative of a hierarchical and direct relationship between Abeta and tau. The clearance of the tau pathology is mediated by the proteasome and is dependent on the phosphorylation state of tau, as hyperphosphorylated tau aggregates are unaffected by the Abeta antibody treatment. These findings indicate that Abeta immunization may be useful for clearing both hallmark lesions of AD, provided that intervention occurs early in the disease course. 相似文献
19.
Iijima-Ando K Hearn SA Granger L Shenton C Gatt A Chiang HC Hakker I Zhong Y Iijima K 《The Journal of biological chemistry》2008,283(27):19066-19076
20.
Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles 总被引:10,自引:0,他引:10
Oddo S Vasilevko V Caccamo A Kitazawa M Cribbs DH LaFerla FM 《The Journal of biological chemistry》2006,281(51):39413-39423
Increasing evidence points to soluble assemblies of aggregating proteins as a major mediator of neuronal and synaptic dysfunction. In Alzheimer disease (AD), soluble amyloid-beta (Abeta) appears to be a key factor in inducing synaptic and cognitive abnormalities. Here we report the novel finding that soluble tau also plays a role in the cognitive decline in the presence of concomitant Abeta pathology. We describe improved cognitive function following a reduction in both soluble Abeta and tau levels after active or passive immunization in advanced aged 3xTg-AD mice that contain both amyloid plaques and neurofibrillary tangles (NFTs). Notably, reducing soluble Abeta alone did not improve the cognitive phenotype in mice with plaques and NFTs. Our results show that Abeta immunotherapy reduces soluble tau and ameliorates behavioral deficit in old transgenic mice. 相似文献