首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM) developed for the treatment of postmenopausal osteoporosis. The purpose of these studies was to evaluate the effects of lasofoxifene on the postnatal development, behavior, and reproductive performance of offspring of female rats given lasofoxifene during organogenesis and lactation. METHODS: Two range-finding studies were conducted to determine the effects of lasofoxifene at doses from 0.01-10 mg/kg on parturition and lactation in pregnant rats and on the early postnatal development of the offspring, and to optimize the dosing regimen. Maternal milk and plasma were sampled for concentrations of lasofoxifene on Lactation Days 4, 7, and 14. In the pre- and postnatal development study, lasofoxifene was administered to pregnant and lactating rats by oral gavage at dose levels of 0.01, 0.03, and 0.1 mg/kg on Gestation Days 6-17 and Lactation Days 1-20. Maternal body weight and food consumption were measured throughout pregnancy, and body weight was measured throughout lactation. Parturition was monitored closely. The F1 offspring were measured for viability, body weight, anogenital distance, the appearance of postnatal developmental indices and reflex behaviors, sensory function, in an age-appropriate functional observational battery, motor activity, auditory startle, passive avoidance, and the Cincinnati Water Maze. The F1 generation was assessed for reproductive function, and the F2 offspring were measured for body weight and viability throughout the lactation period. RESULTS: In the range-finding studies, indications of maternal toxicity included decreased body weight and food consumption, increased length of gestation, prolonged parturition, dystocia, and increased offspring mortality at birth. Concentrations of lasofoxifene in maternal plasma were similar to those in milk, increased with increasing dose, and remained consistent over a 10-day period. In the pre- and postnatal development study, maternal body weights and food consumption were decreased in all treated groups during gestation. Length of gestation was increased, parturition was prolonged, and dystocia was noted in the dams in the 0.1 mg/kg group. There was increased pup mortality in the F1 litters in the 0.1 mg/kg group and all treated groups had decreased offspring body weights beginning at 1 week of age, continuing into the postweaning period and, for the F1 males, into adulthood. Female F1 offspring in the 0.03 and 0.1 mg/kg groups had increased body weights as adults. There were delays in the age of appearance of preputial separation in the males in the 0.1 mg/kg group and vaginal opening in the females in all treated groups. Body temperature was decreased by <0.5 degrees C after weaning for male and female offspring in the 0.1 mg/kg group. The sensory, behavioral, and functional measures, including the tests of learning and memory, were unaffected by treatment. Mating success was lower for the F1 animals in the 0.1 mg/kg group, but there were no effects on the reproductive parameters. Mating, reproduction, and maternal behavior of the F1 animals in the 0.01 and 0.03 mg/kg groups and the survival and body weights of the F2 offspring in all treated groups through Postnatal Day 21 were unaffected by treatment. CONCLUSION: The maternal findings in this study were related to the pharmacologic activity of lasofoxifene. Inhibition of growth of the F1 offspring after perinatal exposure to lasofoxifene was observed, but there were no significant effects on the sensory, behavioral, or functional measures, including learning and memory. There were no effects on the F2 generation. The findings are consistent with those reported for at least one other SERM. The findings of this study do not suggest increased risk for the primary indication of use in postmenopausal women.  相似文献   

2.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM). With high affinity to the alpha and beta human estrogen receptors and greater potency than other SERMs, lasofoxifene is potentially a superior treatment for postmenopausal osteoporosis. In light of the known effects of estrogen-modulating compounds on female reproductive indices, two studies were conducted to evaluate the effects of lasofoxifene on female rat cyclicity, reproduction, and parturition. METHODS: One study evaluated effects of lasofoxifene on estrous cyclicity, and the second study assessed effects on implantation and parturition. In the cyclicity study, lasofoxifene was administered to female rats at doses of 0.1, 0.3, and 1.0 mg/kg/day for 14 consecutive days. After treatment, there was a 3-week reversibility phase followed by a mating phase. In the implantation study, lasofoxifene was administered to pregnant female rats at doses of 0.01, 0.03, and 0.1 mg/kg/day for 7 consecutive days (gestation day [GD] 0-6). Some animals were euthanized on GD 21, and the remainder of the group was allowed to deliver the F1 generation. Several developmental indices were evaluated in the F1 pups through post-natal day (PND) 21. RESULTS: In the cyclicity study, all lasofoxifene-treated females were anestrous by Study Day 7 (1.0 mg/kg) or 9 (0.3 and 0.1 mg/kg). The reversibility phase resulted in restoration of normal estrous cycles by the end of 1 (0.1 mg/kg) or 2 weeks (0.3 and 1.0 mg/kg). During the mating phase, no adverse effects occurred in pregnancy success or reproductive parameters. In the implantation study, all doses of lasofoxifene increased pre- and post-implantation losses, increased gestation length, and reduced litter size. None of the developmental parameters measured on the F1 generation was adversely affected. CONCLUSION: Lasofoxifene reversibly altered the estrous cycle and inhibited implantation, consistent with what would be expected from a member of the SERM class.  相似文献   

3.
This study investigated whether idoxifene, a selective estrogen receptor modulator (SERM), exerted protective effects against ischemia-reperfusion-induced shock. Ovariectomized rats were treated with vehicle, idoxifene, or 17beta-estradiol for 4 days. Rats were subjected to splanchnic artery occlusion (SAO) followed by reperfusion (SOA/R). In vehicle-treated rats, SAO/R resulted in hypotension, hemoconcentration, increased plasma tumor necrosis factor (TNF)-alpha levels, intestinal neutrophil accumulation, and endothelial dysfunction. 17beta-Estradiol treatment increased plasma estradiol concentration and reduced SAO/R-induced tissue injury. Idoxifene treatment had no effect on plasma estradiol concentration but reduced SAO/R-induced hemoconcentration (+8.8 +/- 1.3 vs. +14 +/- 1.3% in the vehicle group, P < 0.01), TNF-alpha production (98 +/- 3.2 vs. 214 +/- 13 pg/ml, P < 0.01), and neutrophil accumulation (0.025 +/- 0.005 vs. 0.047 +/- 0.005 U/g protein, P < 0.01). It also improved endothelial function, prolonged survival time (172 +/- 3.5 vs. 147 +/- 8 min, P < 0.01), and increased survival rate (69 vs. 23%, P < 0.01). Moreover, treatment with 17beta-estradiol or idoxifene in vivo reduced TNF-alpha-induced endothelial dysfunction in vitro. Taken together, these results demonstrated that idoxifene exerted estrogen-like, endothelial-protective, and antishock effects in ovariectomized rats, suggesting that SERMs have therapeutic potential in tissue injury resulting from ischemia-reperfusion.  相似文献   

4.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM) with greater than 100-fold selectivity against all other steroid receptors and is a potentially superior treatment for postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of lasofoxifene on male reproduction in rats in light of the known effects of estrogen modulating compounds on male reproductive ability. METHODS: Lasofoxifene was administered to adult male rats at doses of 0.1, 1, 10, and 100 mg/kg for 66-70 consecutive days. After 28 days of dosing, male rats were cohabited with untreated female rats. Female rats were euthanized on gestation day 14 and a uterine examination was carried out for evaluation of reproductive parameters and embryo viability. Male rats were euthanized after 66-70 days of dosing and epididymal sperm motility and concentration were assayed. The testes, epididymides, prostate, and seminal vesicles were weighed and microscopically examined. RESULTS: The duration of cohabitation was increased for 100 mg/kg males by 0.7 days. The number of males copulating and the number of implantation sites produced per copulation were reduced in the 10 and 100 mg/kg groups. Weights of the seminal vesicles and epididymides were reduced for all groups, although the testes weight and epididymal sperm motility and concentration were not affected by treatment. There were no microscopic findings in the male reproductive tissues. CONCLUSION: The changes in male fertility and reproductive tissue weights after exposure to lasofoxifene are consistent with those previously described for estrogen receptor-modulating compounds.  相似文献   

5.
Starting from a phenol screening hit (6), three series of benzopyranone selective estrogen receptor modulators (SERMs) have been designed, synthesized, and analyzed for both estrogen receptor alpha binding affinity and in vitro activity in two cell assays. The lead compound identified, SP500263 (13), was more potent than raloxifene and tamoxifen in a cell-based assay measuring inhibition of interleukin-6 release.  相似文献   

6.
BACKGROUND: The purpose of this study was to evaluate the effects of lasofoxifene, a selective estrogen receptor modulator (SERM), on rat and rabbit fetal development. METHODS: Lasofoxifene was administered orally to rats (1, 10, 100 mg/kg) between gestation days (GD) 6-17, and in rabbits (0.1, 1, 3 mg/kg) between GD 6-18. Maternal body weight and food consumption were monitored throughout pregnancy. Fetuses were delivered by Cesarean section on GD 21 in rats, and GD 28 in rabbits, to evaluate fetal viability, weight, and morphology. Drug concentrations in maternal plasma were measured in a separate cohort of animals at several time points commencing on GD 17 (rats) and 18 (rabbits). On GD 18 (rat) and GD 19 (rabbit) drug concentrations were measured in maternal plasma and in fetal tissue 2 hr post dosing to determine the fetal to maternal drug ratio. RESULTS: In rats, there were dose-related declines in maternal weight gain and food consumption. Post implantation loss was significantly increased at dosages of 10 and 100 mg/kg, and the number of viable fetuses was decreased at 100 mg/kg. The placental weights increased, whereas fetal weights decreased in a dose-dependent manner. Lasofoxifene-related teratologic findings were noted at 10 and 100 mg/kg and included imperforate anus with hypoplastic tails, dilatation of the ureters and renal pelvis, misaligned sternebrae, hypoflexion of hindpaw, wavy ribs, and absent ossification of sternebrae. In rabbits, neither maternal weight gain nor food consumption were affected during treatment. Between GD 26-28, there was a dose-dependent increased incidence of red discharge beneath the cages. At 1 and 3 mg/kg, resorptions and post-implantation loss increased. There were no significant external or visceral effects, but 3 mg/kg there was an increased incidence of supernumerary ribs. Although the maternal plasma Cmax and AUC(0-24) were dose-dependent, the exposures in the rat were many orders of magnitude greater than in the rabbit even for the same 1 mg/kg dose. The single time point fetal/maternal drug ratio was higher in the rat (1.3-0.78) than in the rabbit (0.21-0.16). CONCLUSION: In general, both maternal and fetal effects of lasofoxifene were similar to those reported with other SERMs. Although the incidence or severity of these effects was, in some instances, greater in the rat than in the rabbit, the doses and the resultant maternal and fetal exposures were many orders of magnitude higher in the rat, suggesting the rabbit to be more sensitive to the toxicological effects of lasofoxifene.  相似文献   

7.
8.
9.
Raloxifene is a selective estrogen receptor modulator approved for prevention of osteoporosis in postmenopausal women. It is selective by virtue of having estrogen agonistic effects in bone, vessels, and blood lipids, while it is antagonistic with mammary and uterine tissue. The aim of the study was to examine whether the raloxifene analogue LY117018 (LY) has estrogenic effects on the thymus, T cell responsiveness, and inflammation. Oophorectomized normal mice were treated with subcutaneous injections of equipotent antiosteoporotic doses of LY (3 mg/kg) and 17beta-estradiol (E2) (0.1 mg/kg) or vehicle as controls. Effects on thymus were studied by analyses of thymus weight, cellularity, and CD4 and CD8 phenotype expression and histology, while inflammation was determined as T-cell-mediated delayed-type hypersensitivity (DTH) and granulocyte-mediated footpad swelling. LY lacked the suppressive properties of E2 on DTH and granulocyte-mediated inflammation. Furthermore, LY induced only minor thymus atrophy compared with E2 and did not, in contrast to E2, alter the thymic CD4/CD8 phenotypes. These results clearly demonstrate that raloxifene principally lacks the modulatory effects of estrogen on T cell responsiveness and inflammation. Our data are discussed in the context of recent findings in estrogen receptor biology and also with respect to estrogen-mediated alteration of autoimmune rheumatic diseases.  相似文献   

10.
Selective progesterone receptor modulators (SPRMs) have been suggested as therapeutic agents for treatment of gynecological disorders. One such SPRM, asoprisnil, was recently in clinical trials for treatment of uterine fibroids and endometriosis. We present the crystal structures of progesterone receptor (PR) ligand binding domain complexed with asoprisnil and the corepressors nuclear receptor corepressor (NCoR) and SMRT. This is the first report of steroid nuclear receptor crystal structures with ligand and corepressors. These structures show PR in a different conformation than PR complexed with progesterone (P4). We profiled asoprisnil in PR-dependent assays to understand further the PR-mediated mechanism of action. We confirmed previous findings that asoprisnil demonstrated antagonism, but not agonism, in a PR-B transfection assay and the T47D breast cancer cell alkaline phosphatase activity assay. Asoprisnil, but not RU486, weakly recruited the coactivators SRC-1 and AIB1. However, asoprisnil strongly recruited the corepressor NCoR in a manner similar to RU486. Unlike RU486, NCoR binding to asoprisnil-bound PR could be displaced with equal affinity by NCoR or TIF2 peptides. We further showed that it weakly activated T47D cell gene expression of Sgk-1 and PPL and antagonized P4-induced expression of both genes. In rat leiomyoma ELT3 cells, asoprisnil demonstrated partial P4-like inhibition of cyclooxygenase (COX) enzymatic activity and COX-2 gene expression. In the rat uterotrophic assay, asoprisnil demonstrated no P4-like ability to oppose estrogen. Our data suggest that asoprisnil differentially recruits coactivators and corepressors compared to RU486 or P4, and this specific cofactor interaction profile is apparently insufficient to oppose estrogenic activity in rat uterus.  相似文献   

11.
12.
Our objective was to determine the effects of SCH 57068 alone and with 17 beta-estradiol (E(2)) on bone, lipids and uteri in ovariectomized (OVX) rats. In OVX animals lumbar vertebral and femoral bone mineral density (BMD) were significantly higher after 12 weeks of treatment with SCH 57068 than in untreated OVX controls. Similarly BMD was superior in OVX + E(2) + SCH 57068 treated animals than in OVX + E(2) controls. SCH 57068 also significantly reduced the increase in bone turnover markers, serum pyridinoline and serum osteocalcin levels, induced by OVX, and increased mechanical bone strength. SCH 57068 also significantly reduced the rise in serum cholesterol and low-density lipoprotein cholesterol induced by OVX. SCH 57068 had no stimulatory effect on uterine epithelium when given alone in OVX rats. SCH 57068 (1 and 2.5 mg/kg) reduced uterine weight and blocked endometrial stimulation induced by E(2). In summary, SCH 57068 adds to the positive effects of E(2) on bone and lipid metabolism but blocks the stimulatory effects of E(2) on the uterus. Potentially, E(2) + SCH 57068 could be combined for the treatment and prevention of breast cancer or as a novel hormone replacement therapy.  相似文献   

13.
Assays for levormeloxifene, a new selective estrogen receptor modulator, and its 7-desmethyl metabolite in human and cynomolgus monkey plasma are described. Plasma was extracted on mixed-mode bonded sorbent material (C8/SCX) and the extracts were analysed by high-performance liquid chromatography with fluorescence detection. Recoveries of levormeloxifene and the metabolite exceeded 70%. Within and total assay precision calculated as a coefficient of variation (C.V.) were <8% for both compounds at all concentration levels, except at the limit of quantitation (LOQ) where the C.V. was 15%. Within and total-assay accuracy calculated as a percentage of the nominal value were between 90 and 114% for both analytes. The LOQ was for levormeloxifene and 7-desmethyllevormeloxifene, respectively, 1.5 and 2.5 ng/ml (man) and 5.2 and 6.9 ng/ml (monkey). In the monkey plasma assay, human plasma could substitute monkey plasma as blank plasma.  相似文献   

14.
The effect of hormone replacement therapy (HRT) on body weight in postmenopausal women is controversial, with studies reporting an increase, a decrease, and no change in body weight. To examine estrogen receptor actions on body weight, we investigated the effects of treatment with a selective estrogen receptor modulator (SERM) on body weight, food intake, and activity and metabolic rate in a nonhuman primate model. Eighteen ovariectomized female rhesus monkeys were treated with a nonsteroidal SERM (GSK232802A, 5 mg/kg po) for 3 mo. GSK232802A decreased lutenizing hormone (P < 0.0001) and follicle-stimulating hormone levels (P < 0.0001), consistent with the estrogenic action of the compound. GSK232802A treatment produced a small but sustained weight loss (4.6 ± 1.0%, P < 0.0001) and reduced adiposity (P < 0.0001), which was due at least in part to a suppression of food intake (3.6 ± 3.7%, P < 0.0001). Physical activity increased during the 3rd mo of treatment (P = 0.04). Baseline activity level and the change in activity due to treatment were correlated, with the most sedentary individuals exhibiting increased physical activity during the 1st mo of treatment (P = 0.02). Metabolic rate did not change (P = 0.58). These results indicate that GSK232802A treatment reduces body weight and adiposity in ovariectomized nonhuman primates by suppressing food intake and increasing activity, particularly in the most sedentary individuals. These findings suggest that SERM treatment may counteract weight gain in postmenopausal women.  相似文献   

15.
Estrogens upregulate estrogen receptor (ER) and progesterone receptor (PR) gene expression in endometrium immediately before ovulation to prepare it for nurturing embryos. Most in vitro model systems have lost the ability to upregulate expression of the ER gene in response to estradiol (E2) or the ability to express the ER gene at all. Here, we used explant cultures from control and E2-treated ewes and assessed expression of four genes (ER, PR, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], and cyclophilin [CYC] genes) that are upregulated by E2 in vivo on Northern blots. In cultures from control and E2-treated ewes, ER and PR messenger ribonucleic acid (mRNA) levels dropped significantly during 24 h of culture in the absence of E2. Glyceraldehyde 3-phosphate dehydrogenase mRNA levels increased 300% in explants from control ewes to match the higher levels in the endometrium of the E2-treated ewe (in vivo and in explant culture). The only effect of E2 in the explant cultures was to prevent the decrease in PR mRNA. The new selective ER modulator, EM-800 (EM), decreased ER and PR mRNA levels in explants from control ewes but upregulated GAPDH and CYC mRNA levels. The EM treatment in vitro mimicked that of E2 by increasing the half-life of ER mRNA in endometrial explants. These data illustrate distinct, gene-specific effects of the explant culture process, E2, and EM on the expression of endometrial genes.  相似文献   

16.
Estrogen receptor (ER) ligands that are able to prevent postmenopausal bone loss, but have reduced activity in the uterus and the mammary gland might be of great value for hormone therapy. It is well established that the classical ER can activate genomic as well as nongenomic signal transduction pathways. In this study, we analyse the in vivo behaviour of ER ligands that stimulate nongenomic ER effects to the same extent as estradiol, but show clearly reduced activation of genomic ER effects in vitro. Using different readout parameters such as morphological changes, cellular proliferation, and target gene induction, we are able to demonstrate that ER ligands with reduced genomic activity in vitro show a better dissociation of bone versus uterine and mammary gland effects than estradiol that stimulates genomic and nongenomic effects to the same extent. We conclude that pathway-selective ER ligands may represent an interesting option for hormone therapy.  相似文献   

17.
To investigate the differential short-term effects of selective estrogen receptor (ER) modulators (SERMs) on uterus, we treated adult ovariectomized rats with a novel SERM, ospemifene (Osp), two previously established SERMs (tamoxifen and raloxifene (Ral)) and estradiol. The expression of two estrogen-regulated early response genes c-fos and vascular endothelial growth factor (VEGF), and DNA synthesis were analysed at 1-24 h after treatment of ovariectomized rats. Induction of c-fos mRNA by each of the SERMs showed a biphasic pattern with peaks at 3 and 20 h, respectively. The maximum level of VEGF mRNA was observed at 1 h after raloxifene and 6 h after tamoxifen or ospemifene treatment. Maximum levels of the c-fos and VEGF mRNA after raloxifene treatment were higher than those seen after treatments with E2 or a corresponding dose of tamoxifen or ospemifene. DNA synthesis was significantly increased by ospemifene, tamoxifen and raloxifene both in luminal and glandular epithelium. The stimulation was transient, peaking at 16 h. In comparison, the maximum level observed at 16 h after E2 treatment sustained at least until 24 h. DNA synthesis in stromal cells was increased by the SERMs but not by E2 at 24 h. When treated together with E2, the SERMs were able to antagonise E2-stimulated DNA synthesis at 16 h. Our results demonstrate that the initial response of uterus to ospemifene, raloxifene and tamoxifen includes activation of early response genes and even transient stimulation of DNA synthesis in spite of their different long-term effects. However, the early stimulatory events may be mediated by different mechanisms leading to diverging pathways in various tissue compartments and development of differential SERM-specific long-term responses of uterus.  相似文献   

18.
Carboranes are a class of carbon-containing polyhedral boron-cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors. Estrogen deficiency results in marked bone loss due to increased osteoclastic bone resorption in females, but estrogen replacement therapy is not generally used for postmenopausal osteoporosis due to the risk of uterine cancer. We synthesized a novel carborane compound BE360 to clarify its anti-osteoporosis activity. BE360 showed a high binding affinity to estrogen receptors (ER), ERα and ERβ. In ovariectomized (OVX) mice, femoral bone volume was markedly reduced and BE360 dose-dependently restored bone loss in OVX mice. However, BE360 did not exhibit any estrogenic activity in the uterus. BE360 also restored bone loss in orchidectomized mice without androgenic action in the sex organs. Therefore, BE360 is a novel selective estrogen receptor modulator (SERM) that may offer a new therapy option for osteoporosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号