首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT) are rare autosomal recessive hereditary disorders characterized by radiosensitivity, chromosomal instability, immunodeficiency and proneness to cancer. Although the clinical features of both syndromes are quite distinct, the cellular characteristics are very similar. Cells from both NBS and AT patients are hypersensitive to ionizing radiation (IR), show elevated levels of chromosomal aberrations and display radioresistant DNA synthesis (RDS). The proteins defective in NBS and AT, NBS1 and ATM, respectively, are involved in the same pathway, but their exact relationship is not yet fully understood. Stumm et al. (Am. J. Hum. Genet. 60 (1997) 1246) have reported that hybrids of AT and NBS lymphoblasts were not complemented for chromosomal aberrations. In contrast, we found that X-ray-induced cell killing as well as chromosomal aberrations were complemented in proliferating NBS-1LBI/AT5BIVA hybrids, comparable to that in NBS-1LBI cells after transfer of a single human chromosome 8 providing the NBS1 gene. RDS observed in AT5BIVA cells was reduced in these hybrids to the level of that seen in immortal NBS-1LBI cells. However, the level of DNA synthesis, following ionizing radiation, in SV40 transformed wild-type cell lines was the same as in NBS-1LBI cells. Only primary wild-type cells showed stronger inhibition of DNA synthesis. In summary, these results clearly indicate that RDS cannot be used as an endpoint in functional complementation studies with immortal NBS-1LBI cells, whereas the cytogenetic assay is suitable for complementation studies with immortal AT and NBS cells.  相似文献   

2.
Nijmegen breakage syndrome (NBS; Seemanová II syndrome) and Berlin breakage syndrome (BBS), also known as ataxia-telangiectasia variants, are two clinically indistinguishable autosomal recessive familial cancer syndromes that share with ataxia-telangiectasia similar cellular, immunological, and chromosomal but not clinical findings. Classification in NBS and BBS was based on complementation of their hypersensitivity to ionizing radiation in cell-fusion experiments. Recent investigations have questioned the former classification into two different disease entities, suggesting that NBS/BBS is caused by mutations in a single radiosensitivity gene. We now have performed a whole-genome screen in 14 NBS/BBS families and have localized the gene for NBS/BBS to a 1-cM interval on chromosome 8q21, between markers D8S271 and D8S270, with a peak LOD score of 6.86 at D8S1811. This marker also shows strong allelic association to both Slavic NBS and German BBS patients, suggesting the existence of one major mutation of Slavic origin. Since the same allele is seen in both former complementation groups, genetic homogeneity of NBS/BBS can be considered as proved.  相似文献   

3.
Nijmegen Breakage Syndrome (NBS) is a very rare autosomal recessive chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency and a high incidence of malignancies. Cells from NBS patients are hypersensitive to ionizing radiation (IR) and display radioresistant DNA synthesis (RDS). NBS is caused by mutations in the NBS1 gene on chromosome 8q21 encoding a protein called nibrin. This protein is a component of the hMre11/hRad50 protein complex, suggesting a defect in DNA double-strand break (DSB) repair and/or cell cycle checkpoint function in NBS cells. We established SV40 transformed, immortal NBS fibroblasts, from primary cells derived from a Polish patient, carrying the common founder mutation 657del5. Immortalized NBS cells, like primary cells, are X-ray sensitive (2-fold) and display RDS following IR. They show an increased sensitivity to bleomycin (3.5-fold), etoposide (2.5-fold), camptothecin (3-fold) and mitomycin C (1.5-fold), but normal sensitivity towards UV-C. Despite the clear hypersensitivity towards DSB-inducing agents, the overall rates of DSB-rejoining in NBS cells as measured by pulsed field gel electrophoresis were found to be very similar to those of wild type cells. This indicates that the X-ray sensitivity of NBS cells is not directly caused by an overt defect in DSB repair.  相似文献   

4.
Microcell-mediated transfer of a single human chromosome from repair-proficient human cells to genetic complementation group F cells from the hereditary disease xeroderma pigmentosum (XP) results in partial complementation of repair-defective phenotypes. The complementing chromosome was identified by cytogenetic and molecular analysis as human chromosome 15. Transfer of this chromosome to XP-F cells restores approximately 20% of the resistance of wild-type cells to killing by UV radiation or by the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), as well as partial repair synthesis of DNA measured as unscheduled DNA synthesis. Additionally, complemented XP-F cells have an enhanced capacity for reactivation of the plasmid-borne E. coli cat gene following its inactivation by UV radiation. Phenotypic complementation of XP cells by chromosome 15 is specific to genetic complementation group F; no effect on the UV sensitivity of XP-A, XP-C, or XP-D cells was detected. The observation that phenotypic complementation is partial is open to several interpretations and does not allow the definitive conclusion that the XP-F locus is carried on chromosome 15.  相似文献   

5.
It has been shown that the X-ray-sensitive Chinese hamster V79 mutants (V-E5, V-C4 and V-G8) are similar to ataxia-telangiectasia (A-T) cells. To determine whether the AT-like rodent cell mutants are defective in the gene homologous to A-T (group A, C or D), human chromosome 11 was introduced to the V-E5 and V-G8 mutant cells by microcell-mediated chromosome transfer. Forty independent hybrid clones were obtained in which the presence of chromosome 11 was determined by in situ hybridization. The presence of the region of chromosome 11q22–23 was shown by molecular analysis using polymorphic DNA markers specific for the ATA, ATC and ATD loci. Seventeen of the obtained monochromosomal Chinese hamster hybrids contained a cytogenetically normal human chromosome 11, but only twelve hybrid cell lines were shown to contain an intact 11q22–23 region. Despite the complementation of the X-ray sensitivity by a normal chromosome 11 introduced to A-T cells (complementation group D), these twelve Chinese hamster hybrid clones showed lack of complementation of X-ray and streptonigrin hypersensitivity. The observed lack of complementation does not seem to be attributable to hypermethylation of the human chromosome 11 in the rodent cell background, since 5-azacytidine treatment had no effect on the streptonigrin hypersensitivity of the hybrid cell lines. These results indicate that the gene defective in the AT-like rodent cell mutants is not homologous to the ATA, ATC or ATD genes and that the human gene complementing the defect in the AT-like mutants seems not to be located on human chromosome 11.  相似文献   

6.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, a birdlike face, growth retardation, immunodeficiency, lack of secondary sex characteristics in females, and increased incidence of lymphoid cancers. NBS cells display a phenotype similar to that of cells from ataxia-telangiectasia patients, including chromosomal instability, radiation sensitivity, and aberrant cell-cycle-checkpoint control following exposure to ionizing radiation. A recent study reported genetic linkage of NBS to human chromosome 8q21, with strong linkage disequilibrium detected at marker D8S1811 in eastern European NBS families. We collected a geographically diverse group of NBS families and tested them for linkage, using an expanded panel of markers at 8q21. In this article, we report linkage of NBS to 8q21 in 6/7 of these families, with a maximum LOD score of 3.58. Significant linkage disequilibrium was detected for 8/13 markers tested in the 8q21 region, including D8S1811. In order to further localize the gene for NBS, we generated a radiation-hybrid map of markers at 8q21 and constructed haplotypes based on this map. Examination of disease haplotypes segregating in 11 NBS pedigrees revealed recombination events that place the NBS gene between D8S1757 and D8S270. A common founder haplotype was present on 15/18 disease chromosomes from 9/11 NBS families. Inferred (ancestral) recombination events involving this common haplotype suggest that NBS can be localized further, to an interval flanked by markers D8S273 and D8S88.  相似文献   

7.
Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation, chromosome instability and high frequency of malignancies. Since cellular features partly overlap with those of ataxia-telangiectasia (A-T), NBS was long considered an A-T clinical variant. NBS1, the product of the gene underlying the disease, contains three functional regions: the forkhead-associated (FHA) domain and BRCA1 C-terminus (BRCT) domain at the N-terminus, several SQ motifs (consensus phosphorylation sites by ATM and ATR kinases) at a central region and MRE11-binding region at the C-terminus. NBS1 forms a multimeric complex with hMRE11/hRAD50 nuclease at the C-terminus and recruits or retains them at the vicinity of sites of DNA damage by direct binding to histone H2AX, which is phosphorylated by ATM in response to DNA damage. The combination of the FHA/BRCT domains has a crucial role for the binding of NBS1 to H2AX. Thereafter, the NBS1 complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates, while it also might be involved in suppression of inter-chromosomal recombination even for V(D)J recombination. These processes collaborate with cell cycle checkpoints to facilitate DNA repair, while defects of these checkpoints in NBS cells are partial in nature. A possible explanation for these moderate defects are the redundancy of multiple checkpoint regulations in vertebrates, or the modulator role of NBS1, in which NBS1 amplifies ATM activation by accumulation of the MRN complex at damaged sites. This molecular link of NBS1 to ATM may explain the phenotypic similarity of NBS to A-T.  相似文献   

8.
Phosphorylation of NBS1, the product of the gene mutated in Nijmegen breakage syndrome (NBS), by ataxia telangiectasia mutated (ATM), the product of the gene mutated in ataxia telangiectasia, is required for activation of the S phase checkpoint in response to ionizing radiation (IR). However, NBS1 is also thought to play additional roles in the cellular response to DNA damage. To clarify these additional functions of NBS1, we generated NBS cell lines stably expressing various NBS1 mutants from retroviral vectors. The ATM-dependent activation of CHK2 by IR was defective in NBS cells but was restored by ectopic expression of wild-type NBS1. The defects in ATM-dependent activation of CHK2, S phase checkpoint control, IR-induced nuclear focus formation, and radiation sensitivity apparent in NBS cells were not corrected by expression of NBS1 mutants that lack an intact MRE11 binding domain, suggesting that formation of the NBS1-MRE11-RAD50 complex is required for the corresponding normal phenotypes. Expression of NBS1 proteins with mutated ATM-targeted phosphorylation sites (serines 278 or 343) did not restore S phase checkpoint control but did restore the ability of IR to activate CHK2 and to induce nuclear focus formation and normalized the radiation sensitivity of NBS cells. Expression of NBS1 containing mutations in the forkhead-associated or BRCA1 COOH terminus domains did not correct the defects in radiation sensitivity or nuclear focus formation but did restore S phase checkpoint control in NBS cells. Together, these data demonstrate that multiple functional domains of NBS1 are required for ATM-dependent activation of CHK2, nuclear focus formation, S phase checkpoint control, and cell survival after exposure to IR.  相似文献   

9.
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.  相似文献   

10.
Nijmegen breakage syndrome, a chromosomal instability disorder, is characterized in part by cellular hypersensitivity to ionizing radiation. The NBS1 gene product, p95 (NBS1 or nibrin) forms a complex with Rad50 and Mre11. Cells deficient in the formation of this complex are defective in DNA double-strand break repair, cell cycle checkpoint control, and telomere length maintenance. How the NBS1 complex is involved in telomere length maintenance remains unclear. Here we show that the C-terminal region of NBS1 interacts directly with a telomere repeat binding factor, TRF1, by both yeast two-hybrid and in vivo DNA-coimmunoprecipitation assays. NBS1 and Mre11 colocalize with TRF1 at promyelocytic leukemia (PML) nuclear bodies in immortalized telomerase-negative cell lines, but rarely in telomerase-positive cell lines. The translocation of NBS1 to PML bodies occurs specifically during late S to G(2) phases of the cell cycle and coincides with active DNA synthesis in these NBS1-containing PML bodies. These results suggest that NBS1 may be involved in alternative lengthening of telomeres in telomerase-negative immortalized cells.  相似文献   

11.
Nijmegen breakage syndrome (NBS) is an autosomal genetic disease demonstrating a variety of phenotypic abnormalities, including premature aging, increased cancer incidence, chromosome instability, and sensitivity to ionizing radiation. The gene involved in NBS, NBS1, is part of the MRE11/RAD50/NBS1 (MRN) complex that also includes MRE11 and RAD50, which is involved in DNA repair and cell cycle regulation in response to DNA damage. The MRN complex is also involved in telomere maintenance, as demonstrated by the shortened telomeres in NBS primary human fibroblasts and the association of NBS1 with the telomere-binding protein TRF2. To learn more about how a deficiency in telomere maintenance might contribute to chromosome instability in NBS, we have investigated the stability of telomeres in two telomerase-positive human tumor cell clones, BNmt-On and BNmt-Off, expressing an inducible NBS1(S278A/S343A) gene containing mutations at serines 278 and 343 phosphorylated by ATM. The results demonstrate an increased rate of telomere loss in both clones following expression of NBS1(S278A/S343A). The absence of detectable changes in average telomere length suggests that NBS1-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. The recombination events associated with telomere loss were found to be similar to those shown previously to result in breakage/fusion/bridge cycles, suggesting that telomere loss can contribute to chromosome instability in NBS1-deficient cells. Telomere loss showed no correlation with radiosensitivity or radioresistant DNA synthesis, demonstrating that NBS1(S278A/S343A) promotes telomere loss through a separate pathway from these other phenotypes associated with NBS.  相似文献   

12.
Cultured cells from patients with ataxia telangiectasia (AT) or Nijmegen breakage syndrome (NBS) are hypersensitive to ionizing radiation. After radiation exposure, the rate of DNA replication is inhibited to a lesser extent than in normal cells, whereas the frequency of chromosomal aberrations is enhanced. Both of these features have been used in genetic complementation studies on a limited series of patients. Here we report the results of extended complementation studies on fibroblast strains from 50 patients from widely different origins, using the radioresistant DNA replication characteristic as a marker. Six different genetic complementation groups were identified. Four of these, called AB, C, D, and E (of which AB is the largest), represent patients with clinical signs of AT. Patients having NBS fall into two groups, V1 and V2. An individual with clinical symptoms of both AT and NBS was found in group V2, indicating that the two disorders are closely related. In AT, any group-specific patterns with respect to clinical characteristics or ethnic origin were not apparent. In addition to the radiosensitive ATs, a separate category of patients exists, characterized by a relatively mild clinical course and weak radiosensitivity. It is concluded that a defect in one of at least six different genes may underlie inherited radiosensitivity in humans. To facilitate research on defined defects, a complete list of genetically characterized fibroblast strains is presented.  相似文献   

13.
In order to identify the human chromosome which carries a mutated gene in cells from a patient with the hereditary disorder ataxia telangiectasia belonging to complementation group D (AT-D), we performed chromosome transfer experiments via microcell fusion. A single, pSV2neo-tagged chromosome, either 11 or 12, derived from normal human fibroblasts was introduced into AT-D cells by microcell fusion, and clones which were resistant to the antibiotic G418 were isolated. All 3 hybrid clones containing an additional copy number of chromosome 11 showed a restoration of the resistance of wild-type cells to killing by X-irradiation, whereas all 3 hybrid clones containing an additional copy number of chromosome 12 remained hyper-radiosensitive, like the parental AT cells. The results indicate that a defective gene of AT-D cells is also located on chromosome 11, since a genetic linkage analysis has previously suggested that a defective gene of its complementation group A is located on this chromosome.  相似文献   

14.
Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.  相似文献   

15.
16.
NBS1-deficient cells exhibit pronounced radiosensitivity and defects in chromosome integrity after ionizing radiation (IR) exposure, yet show only a minor defect in DNA double-strand break (DSB) rejoining, leaving an as yet unresolved enigma as to the nature of the radiosensitivity of these cells. To further investigate the relationship between radiosensitivity, DSB repair, and chromosome stability, we have compared cytological and molecular assays of DSB misrejoining and repair in NBS1-defective, wild type, and NBS1-complemented cells after IR damage. Our findings suggest a subtle defect in overall DSB rejoining in NBS1-defective cells and uniquely also reveal reduced ability of NBS1-defective cells to rejoin correct ends of DSBs. In agreement with published results, one of two different NBS1-defective cell lines showed a slight defect in overall rejoining of DSBs compared to its complemented counterpart, whereas another NBS line did not show any difference from wild type cells. Significant defects in the correct rejoining of DSBs compared to their respective controls were observed for both NBS1-defective lines. The defect in DSB rejoining and the increased misrejoining detected at the molecular level were also reflected in higher levels of fragments and translocations, respectively, at the chromosomal level. This work provides both molecular and cytological evidence that NBS1-deficient cells have defects in DSB processing and reveals that these molecular events can be manifest cytologically.  相似文献   

17.
The human excision-repair gene ERCC3 was cloned after DNA-mediated gene transfer to the uv-sensitive Chinese hamster ovary mutant cell line 27-1, a member of complementation group 3 of the excision-defective rodent cell lines. The ERCC3 gene specifically corrects the DNA repair defect of xeroderma pigmentosum (XP) complementation group B, which displays the clinical symptoms of XP as well as of another rare excision-repair disorder, Cockayne syndrome. The gene encodes a presumed DNA and chromatin binding helicase, involved in early steps of the excision-repair pathway. ERCC3 was previously assigned to human chromosome 2 (L.H. Thompson, A.V. Carrano, K. Sato, E.P. Salazar, B.F. White, S.A. Stewart, J.L. Minkler, and M.J. Siciliano (1987) Somat. Cell Genet. 13: 539-551). Here we report its subchromosomal localization in the q21 region of chromosome 2 via somatic cell hybrids containing a translocated chromosome 2 and in situ hybridization with fluorescently labeled ERCC3 probes.  相似文献   

18.
Biallelic mutations in the NBS1 gene are responsible for the Nijmegen breakage syndrome (NBS), a rare autosomal recessive disorder characterized by chromosome instability and hypersensitivity to ionising radiation (IR). Epidemiological data evidence that the NBS1 gene can be considered a susceptibility factor for cancer development, as demonstrated by the fact that almost 40% of NBS patients have developed a malignancy before the age of 21. Interestingly, also NBS1 heterozygotes, which are clinically asymptomatic, display an elevated risk to develop some types of malignant tumours, especially breast, prostate and colorectal cancers, lymphoblastic leukaemia, and non-Hodgkin’s lymphoma (NHL). So far, nine mutations in the NBS1 gene have been found, at the heterozygous state, in cancer patients. Among them, the 657del5, the I171V and the R215W mutations are the most frequently described. The pathogenicity of these mutations is presumably connected with their occurrence in the highly conserved BRCT tandem domains of the NBS1 protein, which are present in a large superfamily of proteins, and are recognized as major mediators of processes related to cell-cycle checkpoint and DNA repair.This review will focus on the current state-of-knowledge regarding the correlation between carriers of NBS1 gene mutations and the proneness to the development of malignant tumours.Key Words: NBS1, 657del5 mutation, R215W mutation, I171V mutation, IVS11+2insT mutation, heterozygous, cancer predisposition, lymphoma, breast cancer, prostate cancer, colorectal cancer.  相似文献   

19.
NBS1 is known to be involved in DNA damage-induced cellular responses after exposure to ionizing radiation (IR). Phosphorylation of NBS1 contributes to cell-cycle checkpoints. The aim of this study was to determine whether heat exposure induces or stimulates cellular responses mediated by the phosphorylation of NBS1 in human skin fibroblast cell lines. The results of immunofluorescent staining and Western blot analysis showed that NBS1 proteins are phosphorylated after exposure to heat in the nucleus of a normal skin fibroblast cell line (82-6 cells). This suggests that the NBS1-mediated signal transduction could be induced by heat. We further examined whether a deficiency in the NBS1 protein modifies heat sensitivity in human skin fibroblast cell lines. A skin fibroblast cell line (Gmtert), derived from a Nijmegen breakage syndrome (NBS) patient containing mutant NBS1, showed higher sensitivity to heat than the same cell line transfected with the wild-type copy of the NBS1 gene. We also showed that transfection of a DNA cassette expressing small interference RNA (siRNA) targeted to NBS1 into 82-6 cells enhanced cell sensitivity to heat. These results suggest that NBS1 is involved in cellular responses to DNA damage which is induced by heat exposure as well as by radiation exposure in human skin fibroblast cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号