首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ground beetle assemblages were monitored at four tallgrass prairie sites burned on 3-year cycles in northeastern Iowa. The objectives of this study were to quantify differences in carabid communities between original and reconstructed tallgrass prairies, and to determine the responses of ground beetles to 3-year cycles of early spring fire commonly used to manage tallgrass prairies. Using pitfall traps, ground beetle assemblages in two original and two reconstructed tallgrass prairies were compared between 1994 and 1998, where beetles were sampled annually (0-, 1-, and 2-year post-fire conditions) from plots burned every 3 years. When burned, the greatest abundance, activity density, and species richness of carabid beetles occurred the year immediately following a spring burn, with abundance declining steadily with increased time since burning. Overall ground beetle diversity as determined by Shannon's diversity index was greatest in original tallgrass prairies several years after a fire. Some species of ground beetles were found only in original prairies, while others were found primarily in reconstructed prairie. Similarly, some species were more abundant the year immediately following a burn, while others were found in greater abundance with increased time since fire. NMS ordination and indicator species analysis clearly show differences in carabid species between original and reconstructed tallgrass prairies, but did not show differences among burn treatments.  相似文献   

2.
Abstract. The study of vegetation dynamics in tallgrass prairie in response to fire has focused on dormant season fire in late successional prairies. Our objective was to determine if late season fire of varying frequency results in divergent successional patterns in an early successional tallgrass prairie disturbed by grazing and cultivation. Specifically, we evaluated the influence of late‐summer fires of varying frequency on community composition and species richness. We collected vegetation and environmental data on two sites burned in the late growing‐season at varying frequencies. These communities differed in composition depending primarily on edaphic factors, time since the last burn, and year‐to‐year variation. We interpret the time effect as related to changes in species composition accompanying plant succession that followed disturbance either from cropping and heavy grazing on the loamy site or heavy grazing on the shallow site. Other unidentified factors also have a role in vegetation dynamics on this prairie. Community composition and species richness were not consistently responsive to frequency of growing‐season fires.  相似文献   

3.
Local ecosystem resilience to fire disturbance can be influenced by multiple factors, from topography and climate, to fire history and pre-fire structure of biotic communities. Here we investigated the factors affecting post-fire recovery of scrub vegetation in areas under Mediterranean climate affected by frequent fires. We hypothesized that, under comparable climatic and topographic conditions, geological factors (with bedrock type as a proxy) would be at least as important as fire history in explaining patterns of post-fire recovery. We surveyed scrub vegetation in a mountain study area in Portugal, using a stratified random sampling scheme, with fire frequency, time since last fire, and bedrock type (granite vs. schist) as stratifying layers. Based on vegetation and plant community data from 40 plots, we analyzed total species richness and composition, and the relative abundance of functional groups defined on the basis of general (non fire-specific) life-history traits. We found that, at a local scale, lithology can override fire history in determining post-fire recovery. Vegetation plots on granite exhibited a considerable development of tall scrubs and higher values of total species richness. They also hosted higher numbers of animal-dispersed woody species, of trees and tall scrubs, of woody deciduous species, and of forest, edge and tall scrub species. Differences in the post-fire development of scrub vegetation and in the functional profile of plant communities highlight the need to consider local geological diversity when establishing priorities for post-fire active restoration under scenarios of limited resources.  相似文献   

4.
Restoration efforts often focus on plants, but additionally require the establishment and long‐term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long‐term patterns in the response of bees to habitat restoration by sampling bee communities along a 26‐year chronosequence of restored tallgrass prairie in north‐central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one‐to‐one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre‐restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post‐restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one‐to‐one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.  相似文献   

5.
Effects of fire and small-scale soil disturbances on species richness, community heterogeneity, and microsuccession were investigated in a central Oklahoma tallgrass prairie. In the fall of 1985, 0.2 m2 soil disturbances were created on burned and unburned tallgrass prairie. Vegetation on and off disturbances was sampled at monthly intervals over two growing seasons. During the first growing season, the cover of forbs and annuals, and species richness were significantly greater on versus off disturbances, but these differences did not persist through the second year. The variation in species composition among disturbed plots (heterogeneity) was significantly greater compared to undisturbed areas throughout the study. Fire had no consistent effect on richness and heterogeneity of vegetation on soil disturbances but fire reduced heterogeneity on undisturbed vegetation. Rate of succession, based on an increase in cumulative cover of perennial grasses over time, did not differ among treatments during the first growing season. During the second year, rate of succession was significantly greater on burned soil disturbances compared to unburned soil disturbances. These results suggest that while small-scale soil disturbances have primarily short-lived effects on grassland community structure, disturbances do help to maintain spatial and temporal variation in tallgrass prairie communities. Unlike in undisturbed vegetation, however, species richness and heterogeneity on soil disturbances were little effected by fire, but the rate of colonization onto disturbances appeared to be enhanced by fire.  相似文献   

6.
Historically, diversity in a community was often believed to result primarily from local processes, but recent evidence suggests that regional diversity may strongly influence local diversity as well. We used experimental and observational vegetation data from Konza Prairie, Kansas, USA, to determine if: (1) there is a relationship between local and regional richness in tallgrass prairie vegetation; (2) local dominance reduces local species richness; and (3) reducing local dominance increases local and regional species richness. We found a positive relationship between regional and local richness; however, this relationship varied with grazing, topography and fire frequency. The decline in variance explained in the grazed vegetation, in particular, suggested that local processes associated with grazing pressure on the dominant grasses strongly influenced local species richness. Experimental removal of one of the dominant grasses, Andropogon scoparius , from replicate plots resulted in a significant increase in local species richness compared to adjacent reference plots. Overall all sites, species richness was higher in grazed (192 spp.) compared to ungrazed (158 spp.) areas. Across the Konza Prairie landscape, however, there were no significant differences in the frequency distribution of species occurrences, or in the relationship between the number of sites occupied and average abundance in grazed compared to ungrazed areas. Thus, local processes strongly influenced local richness in this tallgrass prairie, but local processes did not produce different landscape-scale patterns in species distribution and abundance. Because richness was enhanced at all spatial scales by reducing the abundance of dominant species, we suggest that species richness in tallgrass prairie results from feedbacks between, and interactions among, processes operating at multiple scales in space and time.  相似文献   

7.
We studied two tallgrass prairies and adjacent restoration areas in northeast Kansas to analyze (1) the invasion of native tallgrass prairie species from native prairie source populations into replanted areas; (2) the establishment of planted prairie species five and 35 years after being sown; and (3) the effects of native prairie species on soil organic matter. For the majority of dominant species, composition differed statistically between sampled areas even though seed rain was available from the native tallgrass prairie remnants. Plant community differences were statistically different between each native prairie area and all respective restoration sites according to the Multiple Response Permutation Procedure. In addition, species richness was greatly reduced in replanted areas compared to adjacent native prairie remnants. Soil carbon isotope ratios indicated that the planting of warm-season grasses resulted in substantial replacement of old soil organic matter by the newly replanted grasses but that it did not create substantial increases of soil organic matter beyond replacement. The lack of accumulation reflects a nutrient-poor system (nitrogen-poor in particular), and the relative absence of native or introduced nitrogen-fixing plant species on the replanted areas may be a significant factor. It appears that restoration of the original highly diverse vegetation component of the tallgrass prairie ecosystem, even when aided by seeding and an adjacent prairie seed source, will occur on carbon- and nitrogen-depleted soils only over very long periods of time (perhaps centuries), if at all.  相似文献   

8.
Fire is an integral disturbance shaping forest community dynamics over large scales. However, understanding the relationship between fire induced habitat disturbance and biodiversity remain equivocal. Ecological theories including the intermediate disturbance hypothesis (IDH) and the habitat accommodation model (HAM) offer predictive frameworks that could explain faunal responses to fire disturbances. We used an 80 year post-fire chronosequence to investigate small reptile community responses to fires in temperate forests across 74 sites. First, we evaluated if changes in species richness, abundance and evenness post-fire followed trends of prior predictions, including the IDH. Second, using competing models of fine scale habitat elements we evaluated the specific ways which fire influenced small reptiles. Third, we evaluated support for the HAM by examining compositional changes of reptile community post-fire. Relative abundance was positively correlated to age post-fire while richness and evenness showed no associations. The abundance trend was as expected based on the prior prediction of sustained population increase post-disturbance, but the trend for richness contradicted the prediction of highest diversity at intermediate levels of disturbance (according to IDH). Abundance changes were driven mainly by changes in overstorey, ground layer, and shelter, while richness and evenness did not associate with any vegetation parameter. Community composition was not strongly correlated to age since fire, thus support for the HAM was weak. Overall, in this ecosystem, frequent fire disturbances can be detrimental to small reptiles. Future studies utilizing approaches based on species traits could enhance our understanding of biodiversity patterns post-disturbance.  相似文献   

9.
Fire frequency has significant effects on the biota of tallgrass prairie, including mammals, vascular plants and birds. Recent concern has been expressed that widespread annual burning, sometimes in combination with heavy livestock grazing, negatively impacts the biota of remaining prairie remnants. A common management recommendation, intended to address this problem, is to create a landscape with a mosaic of different burn regimes. Pitfall trapping was used to investigate the impacts of fire pattern on the diversity and species composition of ground beetles (Coleoptera: Carabidae) at Konza Prairie Biological Station in eastern Kansas, USA. Trapping was conducted over three seasons in landscape units burned on average every 1, 4, or 20 years, and in a fourth season across the available range of vegetative structure to assess the variability of the community within the study system. In the fifth season communities were also followed immediately after two fire events to detect within-season effects of fire and to study short-term patterns of post-disturbance community assembly. Fire frequency had comparatively minimal effects on ground beetle diversity measures, and most numerically common species were observed widely across habitat and management types. Fire frequency effects were manifested primarily in changes in abundance of common species. Colonization of burned areas apparently did not occur from juxtaposed non-burned areas, but from underground or from long distances. While these results suggest that widespread annual burning of tallgrass prairie remnants may not have dramatic effects on prairie ground beetles, we urge caution regarding the application of these results to other taxa within tallgrass prairie.  相似文献   

10.
Native unploughed tallgrass prairie from Konza Prairie, Kansas, USA is described with respect to plant species compositional changes over a five year period in response to fire and topography. The principal gradient of variation in the vegetation is related to time since burning. Species show an individualistic response in terms of relative abundance to this gradient. Both the percentage of and cover of C4 species and all grasses decrease as the prairie remains unburnt. Forb and woody plant species numbers and abundance increase along this gradient. A secondary gradient of variation reflects topography (i.e. upland versus lowland soils). Upland soils support a higher species richness and diversity. Upland and lowland plant assemblages are distinct except on annually burnt prairie. The interaction between burning regime, topography and year-to-year climatic variation affects the relative abundance of the plant species differentially. The most dominant species overall, Andropogon gerardii, was affected only by year-to-year variation (i.e. climate). Its position at the top of the species abundance hierarchy was unaffected by burning regime or soil type. The other dominant species showed a suite of varying responses to these factors.Deceased May, 1986.  相似文献   

11.
Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories (‘pyrodiversity’), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.  相似文献   

12.
Landscape-level wildfires have a major role in structuring faunal assemblages, particularly in fire-prone landscapes. These effects are mediated by changes to vegetation structure and composition that directly influence the availability of shelter, feeding and breeding resources. We investigated the response of a semi-arid shrubland bird community in Western Australia to the prevailing fire regime by examining the abundance, diversity and guild structure in relation to time since fire. We also examined vegetation structural attributes in relation to time since fire. We surveyed 32 sites ranging in age from 12 to 84 years since last fire. A total of 845 birds from 40 species were recorded. Vegetation structure varied with fire history with old and very old sites characterised by less bare ground, more leaf litter cover and greater canopy cover. Bird community composition varied with time since fire, driven by increased bird species richness and abundance of insectivores, granivores/frugivores, golden whistlers, grey shrike-thrush and red-capped robins with time since fire. Frequent, intense landscape-scale fires transform the landscape into homogeneous young shrublands, which may render vegetation unsuitable for several species and guilds.  相似文献   

13.
The Mountain Renosterveld vegetation of the Roggeveld is an escarpment type renosterveld showing strong karroid affinities. Fire plays an important role as a landscape scale disturbance that shapes plant communities in this vegetation type, however, post-fire succession has never before been documented for renosterveld vegetation. A study was therefore conducted in the northern Roggeveld to improve our understanding of the recovery of the vegetation following fire. The natural vegetation recovery was analysed using line transect data accumulated at five different sites over a ten year period. This paper reports on the post-fire vegetation trends with respect to changes in species composition, species richness, life form composition and life form richness. Vegetation cover began to re-establish within the first nine months following the fire, and remained at a high level from years 3 to 10. At the first survey the species richness varied from 13 to 17 species, with the highest species richness (14 to 31 species) generally encountered at each transect after three years. The highest Shannon index values were generally found within the first three years and the lowest Shannon index values were found in years 9 and 10. In all cases the Principal Co-ordinate Analysis ordinations of the species composition data indicated a clear separation in the species composition between the first two years (years 1 and 2) following the fire and the remaining years (year 3 to 10). This study also supports the ‘initial floristic composition’ model of Egler (1954) in that all or the majority of species encountered during the succession were already present at the beginning of the recovery phase and there was a rapid re-establishment of the initial plant community.  相似文献   

14.
《Acta Oecologica》2004,25(3):137-142
We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently–burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.  相似文献   

15.
Abstract.  1. The effects of prescribed fire on ant community structure were examined in a regenerating longleaf pine savanna in Florida, U.S.A. The presence of ants on 20, 10 × 10 m plots was determined by baiting every 1–3 months from 18 months before a fire until 6 months afterwards.
2. Expected species richness (based on rarefaction) and species density 6 months post-fire were significantly lower than for the same month (September) 6 months before the fire.
3. Cluster analysis revealed that the effects of fire were far less important predictors of ant community structure than seasonality and unexplained inter-annual variation. Thus, overall, the impacts of fire were relatively minor and short term at the community level.
4. Different functional groups of ants (as defined by Andersen, 1997) responded to fire in strikingly different ways. Generalised Myrmicinae (e.g. Pheidole spp., Monomorium viride ) were affected more severely by fire than were the other functional groups. In contrast, the dominant Dolichoderinae ( Forelius pruinosus ) exhibited a large increase after the fire and seemed to be responsible for the decline in abundance of several species.
5. A strong negative correlation between F. pruinosus and other groups of ants immediately after the fire suggested more intense competition among ants at that time. Six months post-fire, the abundance of F. pruinosus decreased markedly and the abundance of other species rebounded.
6. The rapid post-fire recovery of the ant community probably reflects adaptations of ants to a chronic fire regime.  相似文献   

16.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

17.
The effects of fire on the composition of a bird community were investigated in an Amazonian savanna near Alter-do-Ch?o, Pará (Brazil). Mist-net captures and visual counts were used to assess species richness and bird abundance pre- and post-fire in an approximately 20 ha area. Visual counts along transects were used to survey birds in an approximately 2000 ha area in a nearby area. Results using the same method of ordination analysis (multidimensional scaling) showed significant effects of fire in the 20 ha and 2000 ha areas and strongly suggest direct effects on bird community composition. However, the effects were different at different spatial scales and/or in different years, indicating that the effects of fire vary spatially and/or temporally. Bird community composition pre-fire was significantly different from that found post-fire. Using multiple regression analysis it was found that the numbers of burned and unburned trees were not significantly related to either bird species richness or bird abundance. Two months after the fire, neither bird species richness nor bird abundance was significantly related to the number of flowering trees (Lafoensia pacari) or fruiting trees (Byrsonima crassifolia). Since fire is an annual event in Alter-do-Ch?o and is becoming frequent in the entire Amazon, bird community composition in affected areas could be constantly changing in time and space.  相似文献   

18.
Changes in fire frequency, extent, and intensity mean that understanding the effects of fire on plants and animals is a primary concern for ecologists and land managers. Given the potentially conflicting fire responses of species both within and across taxonomic groups, prescribing fire regimes based on the response of one or only a few species may have negative consequences for other species. Here, we integrate data collected from a series of independent but complementary studies spanning a 75 + year chronosequence in a semi-arid shrubland ecosystem in south-western Australia to consider how fire management can best promote biodiversity both within and across taxonomic groups (plants, birds, small mammals, and reptiles). Younger fire ages (6–14 years) contained sparse shrubs, large areas of bare ground, and lacked a distinct litter layer and canopy. The oldest vegetation (60–85 years) had a distinct canopy, a well-developed litter layer and cryptogamic crust, higher variability in patch width, and more woody debris. Plant species richness and diversity decreased with time since fire, whereas bird species richness and diversity increased with time since fire, and mammal and reptile species richness and diversity showed no trend. The composition of all four taxonomic groups varied according to time since fire and the presence of 11 species was confined above or below certain fire-age thresholds. Our results support the need to maintain a mix of both younger and older fire ages across the landscape to maximise species diversity, and highlight the particular importance of older fire ages for many species. Future fire management for biodiversity conservation will benefit from identifying and reconciling cross-taxa contrasts and complementarities.  相似文献   

19.
We conducted a meta-analysis of the effects of fire on the abundance and alpha diversity of ants based upon data published over the past 70 years. Overall, fire reduced ant diversity by 18 %, but had no effect on ant abundance. However, there was significant variation in the effect of fire on ant diversity amongst different vegetation types. Fire significantly decreased ant diversity in forests—especially in tropical forests—whereas in deserts, grasslands, and savannas it did not. Similarly, fire had a strong negative mean effect on ant diversity in sites where it is uncommon, but did not significantly affect diversity where it is a recurrent phenomenon. There is evidence that, in forests, wildfires have a stronger negative effect on ant diversity than does prescribed burning. In addition, we found marginally significant differences in the effect of fire on the abundance and diversity of forest ants among studies that sampled ants at different times post-fire, or that sampled ants from different soil strata. In contrast, fire did not significantly affect the abundance or diversity of savanna ants, and this was true even after we took into account the geographic location of the study, the ant community sampled, the time since fire, and the fire regime. Overall, the results of our study indicate that habitat type is an important predictor of ant community responses to fire. However, even within a given habitat, reported effects were quite variable among the studies reviewed, evidencing the idiosyncratic nature of fire effects on ants.  相似文献   

20.
The Samcheok forest fire of April 2000 was the biggest stand-replacing fire recorded in Korea, and led to the largest-scale salvage logging operation (performed until 2005) ever implemented. We investigated the effects of the treatments performed after the fire on the breeding bird community in 2002–2005 (the management period) and 2006–2008 (the post-management period). A total of 75 line transect surveys resulted in 660 detections of 54 species in undisturbed stands (CO), in burned and naturally restored stands (NI), and in burned and logged stands (IT). Four species (Parus major, Aegithalos caudatus, Dendrocopos kizuki, and Parus ater) were identified as indicator species in CO which showed no temporal changes in bird communities and habitat structure. Among the various stand treatments, the standardized species richness was highest in CO (11.6 ± 4.6 species/transect in 2002–2005, 12.1 ± 3.5 in 2006–2008), and this richness did not change over time. On the other hand, low richness was observed in NI (6.8 ± 2.6 in 2002–2005, 9.6 ± 2.3 in 2006–2008), and the lowest richness was seen in IT (5.0 ± 2.4 in 2002–2005, 6.1 ± 1.8 in 2006–2008), but both of these increased over time. Although the bird abundances in NI and IT were lower than those in CO (38.0 ± 27.7 birds/transect in 2002–2005, 31.3 ± 10.9 in 2006–2008), the abundances in NI (15.1 ± 8.6 in 2002–2005, 17.6 ± 11.4 in 2006–2008) and IT (11.7 ± 8.3 in 2002–2005, 10.0 ± 4.6 in 2006–2008) were not significantly different. There was no significant difference in abundance between time periods for any of the stand treatments. These results imply that NI (i.e., no salvage logging) allows greater bird richness but not abundance to be recovered compared to IT. No indicator species was consistently present in NI throughout the two time periods covered due to the rapid regrowth of vegetation, but four open-habitat dwellers (Falco tinnunculus, Phoenicurus auroreus, Emberiza cioides, and Sturnus cineraceus) colonized IT during the post-management period. The bird assemblage in IT, as assessed by canonical correspondence analysis, shifted to open habitats, while the avifauna in NI became similar to that in CO over time. While post-fire treatment can provide new colonization opportunities for open-habitat dwellers, the slow colonization process, the low species richness, and the low bird abundance observed in large areas of IT indicate that post-fire treatment using salvage logging inhibits the restoration of forest bird communities by producing a poorer breeding bird community that is very different from the original one. Based on these lessons from the response to the Samcheok forest fire, we suggest that preserving as much of the disturbed forest as possible is essential, and that the current approach to post-fire treatment—intensive salvage logging—needs to be revised to ensure the effective restoration of breeding bird communities in disturbed temperate pine forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号