首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate is the major excitatory neurotransmitter in the retina and is removed from the extracellular space by an energy-dependent process involving neuronal and glial cell transporters. The radial glial Müller cells express the glutamate transporter, GLAST, and preferentially accumulate glutamate. However, during an ischaemic episode, extracellular glutamate concentrations may rise to excitotoxic levels. Is this catastrophic rise in extracellular glutamate due to a failure of GLAST? Using immunocytochemistry, we monitored the transport of the glutamate transporter substrate, D-aspartate, in the retina under normal and ischaemic conditions. Two models of compromised retinal perfusion were compared: (1) Anaesthetised rats had their carotid arteries occluded for 7 days to produce a chronic reduction in retinal blood flow. Retinal function was assessed by electroretinography. D-aspartate was injected into the eye for 45 min. Following euthanasia, the retina was processed for D-aspartate, GLAST and glutamate immunocytochemistry. Although reduced retinal perfusion suppresses the electroretinogram b-wave, neither retinal histology, GLAST expression, nor the ability of Müller cells to uptake D-aspartate is affected. As this insult does not appear to cause excitotoxic neuronal damage, these data suggest that GLAST function and glutamate clearance are maintained during periods of reduced retinal perfusion. (2) Occlusion of the central retinal artery for 60 min abolishes retinal perfusion, inducing histological damage and electroretinogram suppression. Although GLAST expression appears to be normal, its ability to transport D-aspartate into Müller cells is greatly reduced. Interestingly, D-aspartate is transported into neuronal cells, i.e. photoreceptors, bipolar and ganglion cells. This suggests that while GLAST is vitally important for the clearance of excess extracellular glutamate, its capability to sustain inward transport is particularly susceptible to an acute ischaemic attack. Manipulation of GLAST function could alleviate the degeneration and blindness that result from ischaemic retinal disease.  相似文献   

2.
马晓蕾  潘峰  胡丹 《生物磁学》2011,(8):1447-1450
目的:研究视神经损伤后视网膜Müller细胞中是否有未折叠蛋白反应(UPR)及其与L一谷氨酸/L一天门冬氨酸转运体(GLAST)的关系。方法:视神经钳夹伤模型建立成功后,运用HE染色观察视网膜神经节细胞数目改变,免疫化学染色,免疫荧光双标记,western-blot观察UPR相关因子需肌醇酶1(IRE-1)与GLAST的表达及相关性。结果:视神经钳夹伤后IRE-1与GLAST在视网膜Muller细胞上共表达,,术后第一天前呈上升趋势,在第一天达到顶峰,后呈下降趋势,第七天下降明显。结论:视神经损伤后,IRE-1与GLAST的趋势变化有一定相关性,提示未折叠蛋白反应可能是调控GLAST变化的原因之一。  相似文献   

3.
4.
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl(2) for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl(2) exposure. Then, [(3)H]-glutamate uptake was measured by liquid scintillation counting; Na(+)-K(+) ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na(+)-K(+) ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl(2). The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.  相似文献   

5.
Mutations in ATP1A2, the gene coding for the Na(+)/K(+)-ATPase alpha(2)-subunit, are associated with both familial hemiplegic migraine and sporadic cases of hemiplegic migraine. In this study, we examined the functional properties of 11 ATP1A2 mutations associated with familial or sporadic hemiplegic migraine, including missense mutations (T263M, T376M, R383H, A606T, R763H, M829R, R834Q, R937P, and X1021R), a deletion mutant (del(K935-S940)ins(I)), and a frameshift mutation (S966fs). According to the Na(+)/K(+)-ATPase crystal structure, a subset of the mutated residues (Ala(606), Arg(763), Met(829), and Arg(834)) is involved in important interdomain H-bond networks, and the C terminus of the enzyme, which is elongated by the X1021R mutation, has been implicated in voltage dependence and formation of a third Na(+)-binding site. Upon heterologous expression in Xenopus oocytes, the analysis of electrogenic transport properties, Rb(+) uptake, and protein expression revealed pronounced and markedly diverse functional alterations in all ATP1A2 mutants. Abnormalities included a complete loss of function (T376M), impaired plasma membrane expression (del(K935-S940)ins(I) and S966fs), and altered apparent affinities for extracellular cations or reduced enzyme turnover (R383H, A606T, R763H, R834Q, and X1021R). In addition, changes in the voltage dependence of pump currents and the increased rate constants of the voltage jump-induced redistribution between E(1)P and E(2)P states were observed. Thus, mutations that disrupt distinct interdomain H-bond patterns can cause abnormal conformational flexibility and exert long range consequences on apparent cation affinities or voltage dependence. Of interest, the X1021R mutation severely impaired voltage dependence and kinetics of Na(+)-translocating partial reactions, corroborating the critical role of the C terminus of Na(+)/K(+)-ATPase in these processes.  相似文献   

6.
7.
8.
This study investigated whether brain-derived neurotrophic factor (BDNF) regulates the L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) in mouse retinal Müller cells (RMCs) under normal and hypoxic conditions. Mouse RMCs were treated with recombinant human BDNF (50, 75, 100, 125, or 150 ng/ml) for 24 h or underwent hypoxia induced by CoCl(2) (125 μM; 6, 12, 24, 48, or 72 h). An additional group underwent combined treatment with BDNF (100 ng/ml; 24, 48, 72, or 96 h) and CoCl(2) (125 μM/ml; 72 h). GLAST and GS mRNA and protein expression, L-[3,4-3H]-glutamic acid uptake, and apoptosis were assessed. BDNF dose-dependently up-regulated GLAST and GS mRNA and protein and increased glutamate uptake. Similarly, in early-stage CoCl(2)-induced hypoxia, GLAST and GS were up-regulated and glutamate uptake increased, but these decreased over time. BDNF also up-regulated GLAST and GS and increased glutamate uptake when RMCs under CoCl(2) induced hypoxic condition. However, BDNF treatment 24 h before CoCl(2) had no effect on GLAST or GS expression. CoCl(2) alone or combined with BDNF did not induce apoptosis. Hypoxia rapidly increased GLAST and GS expressions. This effect was transient, perhaps due to compensatory mechanisms that reduce GLAST and GS by 72 h. BDNF can up-regulate GLAST and GS and increase glutamate uptake during hypoxia, and these functions may underlie its neuroprotective effects.  相似文献   

9.
Short-term exposure of coho salmon smolts (Oncorhynchus kisutch) to a gradual increase in salinity over 2 d (0 per thousand -32 per thousand ) resulted in a decrease in proton pump abundance, detected as changes in immunoreactivity with a polyclonal antibody against subunit A of bovine brain vacuolar H(+)-ATPase. N-ethylmaleimide (NEM)-sensitive H(+)-ATPase activities in gill homogenates remained unchanged over 8 d to coincide with a 3.5-fold increase in Na(+)/K(+)-ATPase activities. A transient increase in plasma [Na(+)] and [Cl(-)] levels over the 8-d period was preceded by a 10-fold increase in plasma cortisol levels, which peaked after 12 h. Long-term (1 mo) acclimation to seawater resulted in the loss of apical immunoreactivity for vH(+)-ATPase and band 3-like anion exchanger in the mitochondria-rich cells identified by high levels of Na(+)/K(+)-ATPase immunoreactivity. The polyclonal antibody Ab597 recognized a Na(+)/H(+) exchanger (NHE-2)-like protein in what appears to be an accessory cell (AC) type. Populations of these ACs were found associated with Na(+)/K(+)-ATPase rich chloride cells in both freshwater- and seawater-acclimated animals.  相似文献   

10.
The present study was aimed at evaluating the role of D(1)- and D(2)-like receptors and investigating whether inhibition of Na(+) transepithelial flux by dopamine is primarily dependent on inhibition of the apical Na(+)/H(+) exchanger, inhibition of the basolateral Na(+)-K(+)-ATPase, or both. The data presented here show that opossum kidney cells are endowed with D(1)- and D(2)-like receptors, the activation of the former, but not the latter, accompanied by stimulation of adenylyl cyclase (EC(50) = 220 +/- 2 nM), marked intracellular acidification (IC(50) = 58 +/- 2 nM), and attenuation of amphotericin B-induced decreases in short-circuit current (28.6 +/- 4.5% reduction) without affecting intracellular pH recovery after CO(2) removal. These results agree with the view that dopamine, through the activation of D(1)- but not D(2)-like receptors, inhibits both the Na(+)/H(+) exchanger (0.001933 +/- 0.000121 vs. 0.000887 +/- 0.000073 pH unit/s) and Na(+)-K(+)-ATPase without interfering with the Na(+)-independent HCO transporter. It is concluded that dopamine, through the action of D(1)-like receptors, inhibits both the Na(+)/H(+) exchanger and Na(+)-K(+)-ATPase, but its marked acidifying effects result from inhibition of the Na(+)/H(+) exchanger only, without interfering with the Na(+)-independent HCO transporter and Na(+)-K(+)-ATPase.  相似文献   

11.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

12.
In the present study of the marine Dungeness crabs Metacarcinus magister, the long term effects of high environmental ammonia (HEA) on hemolymph ammonia and urea concentrations, branchial ammonia excretion rates and mRNA expression levels of the crustacean Rh-like ammonia transporter (RhMM), H(+)-ATPase (subunit B), Na(+)/K(+)-ATPase (α-subunit) and Na(+)/H(+)-exchanger (NHE) were investigated. Under control conditions, the crabs' hemolymph exhibited a total ammonia concentration of 179.3±14.5μmol L(-1), while urea accounted for 467.2±33.5μmol L(-1), respectively. Both anterior and posterior gills were capable of excreting ammonia against a 16-fold inwardly directed gradient. Under control conditions, mRNA expression levels of RhMM were high in the gills in contrast to very low expression levels in all other tissues investigated, including the antennal gland, hepatopancreas, and skeletal muscle. After exposure to 1mmol L(-1) NH(4)Cl, hemolymph ammonia increased within the first 12h to ca. 500μmol L(-1) and crabs were able the keep this hemolymph ammonia level for at least 4 days. During this initial period, branchial RhMM and H(+)-ATPase (subunit B) mRNA expression levels roughly doubled. After 14 days of HEA exposure, hemolymph ammonia raised up to environmental levels, whereas urea levels increased by ca. 30%. At the same time, whole animal ammonia and urea excretion vanished. Additionally, branchial RhMM, H(+)-ATPase, Na(+)/K(+)-ATPase and NHE mRNA levels decreased significantly after long term HEA exposure, whereas expression levels of RhMM in the internal tissues increased substantially. Interestingly, crabs acclimated to HEA showed no mortality even after 4 weeks of HEA exposure. This suggests that M. magister possesses a highly adaptive mechanism to cope with elevated ammonia concentrations in its body fluids, including an up-regulation of an Rh-like ammonia transporter in the internal tissues and excretion or storage of waste nitrogen in a so far unknown form.  相似文献   

13.
Basolateral membranes of Aplysia californica foregut epithelia contain an ATP-dependent Na(+)/K(+) transporter (Na(+)/K(+) pump or Na(+)/K (+) -ATPase). This Na(+)/K(+) pump accounts for both the intracellular Na(+) electrochemical potential (micro) being less than the extracelluar Na(+) micro and the intracellular K(+) micro being more than the extracellular K(+ ) micro. Also, K(+) channel activity resides in both luminal and basolateral membranes of the Aplysia foregut epithelial cells. Increased activity of the Na(+)/K(+) pump, coupled to luminal and basolateral membrane depolarization altered the K(+) transport energetics across the basolateral membrane to a greater extent than the alteration in K(+) transport energetics across the luminal membrane. These results suggest that K(+) transport, either into or out of the Aplysia foregut epithelial cells, is rate-limiting at the basolateral membrane.  相似文献   

14.
GLAST is the predominant glutamate transporter in the cerebellum and contributes substantially to glutamate transport in forebrain. This astroglial glutamate transporter quickly binds and clears synaptically released glutamate and is principally responsible for ensuring that synaptic glutamate concentrations remain low. This process is associated with a significant energetic cost. Compartmentalization of GLAST with mitochondria and proteins involved in energy metabolism could provide energetic support for glutamate transport. Therefore, we performed immunoprecipitation and co-localization experiments to determine if GLAST might co-compartmentalize with proteins involved in energy metabolism. GLAST was immunoprecipitated from rat cerebellum and subunits of the Na(+)/K(+) ATPase, glycolytic enzymes, and mitochondrial proteins were detected. GLAST co-localized with mitochondria in cerebellar tissue. GLAST also co-localized with mitochondria in fine processes of astrocytes in organotypic hippocampal slice cultures. From these data, we hypothesized that mitochondria participate in a macromolecular complex with GLAST to support oxidative metabolism of transported glutamate. To determine the functional metabolic role of this complex, we measured CO(2) production from radiolabeled glutamate in cultured astrocytes and compared it to overall glutamate uptake. Within 15min, 9% of transported glutamate was converted to CO(2). This CO(2) production was blocked by inhibitors of glutamate transport and glutamate dehydrogenase, but not by an inhibitor of glutamine synthetase. Our data support a model in which GLAST exists in a macromolecular complex that allows transported glutamate to be metabolized in mitochondria to support energy production.  相似文献   

15.
Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.  相似文献   

16.
Normal vision depends on the correct function of retinal neurons and glia and it is impaired in the course of diabetic retinopathy. Müller cells, the main glial cells of the retina, suffer morphological and functional alterations during diabetes participating in the pathological retinal dysfunction. Recently, we showed that Müller cells express the pleiotropic protein potassium channel interacting protein 3 (KChIP3), an integral component of the voltage-gated K(+) channels K(V)4. Here, we sought to analyze the role of KChIP3 in the molecular mechanisms underlying hyperglycemia-induced phenotypic changes in the glial elements of the retina. The expression and function of KChIp3 was analyzed in vitro in rat Müller primary cultures grown under control (5.6 mM) or high glucose (25 mM) (diabetic-like) conditions. We show the up-regulation of KChIP3 expression in Müller cell cultures under high glucose conditions and demonstrate a previously unknown interaction between the K(V)4 channel and KChIP3 in Müller cells. We show evidence for the expression of a 4-AP-sensitive transient outward voltage-gated K(+) current and an alteration in the inactivation of the macroscopic outward K(+) currents expressed in high glucose-cultured Müller cells. Our data support the notion that induction of KChIP3 and functional changes of K(V)4 channels in Müller cells could exert a physiological role in the onset of diabetic retinopathy.  相似文献   

17.
Although the neurotoxic potential of methamphetamine (METH) is well established, underlying mechanisms have yet to be identified. In the present study, we sought to determine whether ionic dysregulation was a feature of METH neurotoxicity. In particular, we reasoned that if METH impairs the function of Na(+)/H(+) and/or Na(+)/Ca(2+) antiporters by compromising the inward Na(+) gradient [via prolonged DA transporter (DAT) activation and Na(+)/K(+) ATPase inhibition], then amiloride (AMIL) and other inhibitors of Na(+)/H(+) and/or Na(+)/Ca(2+) exchange would potentiate METH neurotoxicity. To test this hypothesis, mice were treated with METH alone or in combination with AMIL or one of its analogs; 1 week later, the animals were killed for studies of dopamine (DA) neuronal integrity. AMIL markedly potentiated the toxic effect of METH on DA neurons. Potentiation was not caused by increased core temperature, enhanced DAT activity or higher METH brain levels. The DAT inhibitor, WIN-35,428, protected completely against METH-induced DA neurotoxicity in AMIL pretreated animals, suggesting that the potentiating effects of AMIL require a METH/DAT interaction. Findings with METH and AMIL were extended to six other AMIL analogs (MIA, EIPA, DIMA, BENZ, BEP, DiCBNZ), another species (rats), and neuronal type (5-HT neurons). These results support the notion that ionic dysregulation may play a role in METH neurotoxicity.  相似文献   

18.
Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase   总被引:11,自引:0,他引:11  
Based on the observation that the Na(+)/K(+)-ATPase alpha subunit contains two conserved caveolin-binding motifs, we hypothesized that clustering of the Na(+)/K(+)-ATPase and its partners in caveolae facilitates ouabain-activated signal transduction. Glutathione S-transferase pull-down assay showed that the Na(+)/K(+)-ATPase bound to the N terminus of caveolin-1. Significantly, ouabain regulated the interaction in a time- and dose-dependent manner and stimulated tyrosine phosphorylation of caveolin-1 in LLC-PK1 cells. When added to the isolated membrane fractions, ouabain increased tyrosine phosphorylation of proteins from the isolated caveolae but not other membrane fractions. Consistently, ouabain induced the formation of a Na(+)/K(+)-ATPase-Src-caveolin complex in the isolated caveolae preparations as it did in live cells. Finally, depletion of either cholesterol by methyl beta-cyclodextrin or caveolin-1 by siRNA significantly reduced the caveolar Na(+)/K(+)-ATPase and Src. Concomitantly, cholesterol depletion abolished ouabain-induced recruitment of Src to the Na(+)/K(+)-ATPase signaling complex. Like depletion of caveolin-1, it also blocked the effect of ouabain on ERKs, which was restored after cholesterol repletion. Clearly, the caveolar Na(+)/K(+)-ATPase represents the signaling pool of the pump that interacts with Src and transmits the ouabain signals.  相似文献   

19.
Marinobufagenin (MBG) is an endogenous mammalian cardiotonic steroid involved in the inhibition of Na(+)/K(+)-ATPase. Increased plasma levels have been reported in patients with volume expansion-related hypertension. We have recently demonstrated that MBG impairs first trimester cytotrophoblast (CTB) cell proliferation, migration, and invasion, which may play a role in the development of preeclampsia. However, whether apoptosis contributes to altered CTB cell function by MBG remains unknown. Using the human extravillous CTB cell line SGHPL-4, we examined the effect of MBG and a similar Na(+)/K(+)-ATPase inhibitor, ouabain, on the phosphorylation status of Jnk, p38, and Src. Additionally, we measured apoptosis by caspase 9 and 3/7 activity and by annexin-V staining. We also investigated interleukin-6 (IL-6) secretion with or without p38 and Jnk inhibition. MBG significantly increased the phosphorylation of Jnk, p38, and Src and increased the expression of caspase 9 and 3/7 indicating the activation of apoptosis. MBG treatment also stimulated the expression of the early apoptosis marker, annexin-V, which was prevented by Jnk and p38 inhibition. MBG also stimulated the secretion of IL-6, which was attenuated by p38 inhibition. Ouabain had similar effects to those of MBG, suggesting that the apoptotic effects on CTB cells may be mediated by inhibition of Na(+)/K(+)-ATPase. In conclusion, the MBG-induced impairment of CTB function occurs via activation of Jnk, p38, and Src leading to increased apoptosis and IL-6 secretion. These observations may have clinical applicability with respect to the therapy of preeclampsia.  相似文献   

20.
The secondary structure of Na(+)/K(+)-ATPase after modification of the ATP-binding sites was analyzed. Consistently with recent reports, we found in trypsin-treated Na(+)/K(+)-ATPase additionally to alpha-helix also beta-sheet structures in the transmembrane segments. However, binding of fluorescein 5'-isothiocyanate (FITC), the pseudo-ATP analog, to the ATP-binding site did not affect the secondary structure of undigested Na(+)/K(+)-ATPase. Consequently, fluorescence intensity changes of FITC-labeled Na(+)/K(+)-ATPase commonly used to observe conformational transitions of the enzyme reflect physiological changes of the native structure. The metal complex analogues of ATP, Cr(H(2)O)(4)ATP and Co(NH(3))(4)ATP, on the other hand, affected the secondary structure of Na(+)/K(+)-ATPase. We propose that these changes in the secondary structure are responsible for inhibition of backdoor phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号