首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H M Lam  S S Peng    G M Coruzzi 《Plant physiology》1994,106(4):1347-1357
Here, we characterize a cDNA encoding a glutamine-dependent asparagine synthetase (ASN1) from Arabidopsis thaliana and assess the effects of metabolic regulation on ASN1 mRNA levels. Sequence analysis shows that the predicted ASN1 peptide contains a purF-type glutamine-binding domain. Southern blot experiments and cDNA clone analysis suggest that ASN1 is the only gene encoding glutamine-dependent asparagine synthetase in A. thaliana. The ASN1 gene is expressed predominantly in shoot tissues, where light has a negative effect on its mRNA accumulation. This negative effect of light on ASN1 mRNA levels was shown to be mediated, at least in part, via the photoreceptor phytochrome. We also investigated whether light-induced changes in nitrogen to carbon ratios might exert a metabolic regulation of the ASN1 mRNA accumulation. These experiments demonstrated that the accumulation of ASN1 mRNA in dark-grown plants is strongly repressed by the presence of exogenous sucrose. Moreover, this sucrose repression of ASN1 expression can be partially rescued by supplementation with exogenous amino acids such as asparagine, glutamine, and glutamate. These findings suggest that the expression of the ASN1 gene is under the metabolic control of the nitrogen to carbon ratio in cells. This is consistent with the fact that asparagine, synthesized by the ASN1 gene product, is a favored compound for nitrogen storage and nitrogen transport in dark-grown plants. We have put forth a working model suggesting that when nitrogen to carbon ratios are high, the gene product of ASN1 functions to re-direct the flow of nitrogen into asparagine, which acts as a shunt for storage and/or long-distance transport of nitrogen.  相似文献   

2.
The distribution of the number of nucleotide differences between two randomly chosen cistrons in a finite population is studied here when the population size changes from generation to generation. When genetic variability is measured by heterozygosity (i.e., the probability that two cistrons are different), by the probability that two cistrons differ at two or more nucleotide sites, or by mean number of site differences between cistrons, it is seen that in a population going through a small bottleneck all of these measures decline rapidly but, as soon as population size becomes large, they start to increase owing to new mutations. The amount of reduction in these measures depends not only on the size of bottleneck but also on the rate of population growth. The implications of this study explaining the observed variations in the rates of amino acid substitutions during the evolutionary process are also discussed.  相似文献   

3.
Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the mechanism through which amino acids influence the growth of intestinal mucosa. This brief article reviews the experiments leading to the information presented above. We also present evidence from the literature that AZ acts directly to inhibit cell proliferation and increase the rate of apoptosis. Finally, we discuss future experiments that will determine the role of AZ in the regulation of intestinal mucosal growth by amino acids.  相似文献   

4.
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.  相似文献   

5.
6.
Chloroplast DNA codes for transfer RNA.   总被引:7,自引:2,他引:5       下载免费PDF全文
Transfer RNA's were isolated from Euglena gracilis. Chloroplast cistrons for tRNA were quantitated by hybridizing tRNA to ct DNA. Species of tRNA hybridizing to ct DNA were partially purified by hybridization-chromatography. The tRNA's hybridizing to ct DNA and nuclear DNA appear to be different. Total cellular tRNA was hybridized to ct DNA to an equivalent of approximately 25 cistrons. The total cellular tRNA was also separated into 2 fractions by chromatography on dihydroxyboryl substituted amino ethyl cellulose. Fraction I hybridized to both nuclear and ct DNA. Hybridizations to ct DNA indicated approximately 18 cistrons. Fraction II-tRNA hybridized only to ct DNA, saturating at a level of approximately 7 cistrons. The tRNA from isolated chloroplasts hybridized to both chloroplast and nuclear DNA. The level of hybridization to ct DNA indicated approximately 18 cistrons. Fraction II-type tRNA could not be detected in the isolated chloroplasts.  相似文献   

7.
Two populations of Lolium perenne L. S23 (perennial ryegrass), selected for differences in mature leaf dark respiration, were used in a non-destructive indexing system for individual plants, to determine growth parameters. Population GL66, selected for high respiratory rates and low yield, responded strongly to the indexing treatment, when grown at low plant density. Dry weights of all plant parts decreased strongly, as did dry matter percentages of the leaf blades. At high density this population demonstrated the same trend, but additionally allocation to the shoot increased. In contrast, GL72, selected for low respiratory rates and a high yield, responded only at a high plant density. It is argued that there might be a relation between the dissimilar response of the two populations to mechanical influences and the presence of the genotypes of the low-yielding population in the parent variety. The results also emphasize that non-destructive growth analyses can only be used when their effects on the plants are known.  相似文献   

8.
Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.  相似文献   

9.
The Km, Vmax, and Ki of the entry reaction were determined for three substrates of the beta-methyl galactoside transport system: D-galactose, D-glycerol-beta-D-galactoside, and beta-methyl-D-galactoside. Although the data for D-galactose and D-glycerol-beta-D-galactoside followed simple Michaelis-Menten kinetics, the results for beta-methyl-D-galactoside deviated from Michaelis-Menten kinetics in that the Ki for beta-methyl-D-galactoside inhibition of both of the other two substrates was 10-fold greater than the Km for beta-methyl-D-galactoside entry. Furthermore, two partial mgl- strains retain 56% of the parental level of the beta-methyl-D-galactoside entry reaction, but only 12% of the parental level of transport of the other two substrates. The exit reaction of beta-methyl-D-galactoside was shown to be first order. It was stimulated sixfold when the cells were provided with an energy source. This stimulation required adenosine 5'-triphosphate or a related compound. The exit reaction was not altered by mutations in any of the three cistrons which inactivate the beta-methyl-D-galactoside entry reaction, was not increased by growth in the presence of inducers of the entry reaction, and was not repressed by growth on glucose. The striking differences between the entry and exit reactions suggest that they either use different carriers or that none of the three cistrons which are currently known to code for components of the beta-methyl galactoside transport system code for its membrane carrier.  相似文献   

10.
It has been demonstrated that both oligomerisation and accumulation of α-synuclein (ASN) are the key molecular processes involved in the pathophysiology of neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease and other synucleinopathies. Alterations of ASN expression and impairment of its degradation can lead to the formation of intracellular deposits of this protein, called Lewy bodies. Overexpressed or misfolded ASN could be secreted to the extracellular space. Today the prion-like transmission of ASN oligomers to neighbouring cells is believed to be responsible for protein modification and propagation of neurodegeneration in the brain. It was presented that oxidative/nitrosative stress may play a key role in ASN secretion and spread of ASN pathology. Moreover, ASN-evoked protein oxidation, nitration and nitrosylation lead to disturbances in synaptic transmission and cell death. The interaction of secreted ASN with other amyloidogenic proteins and its involvement in irreversible mitochondrial disturbances and oxidative stress were also described. A better understanding of the mechanisms of ASN secretion and dysfunction may help to explain the molecular mechanisms of neurodegeneration and may be the basis for the development of novel therapeutic strategies.  相似文献   

11.
A strong approach to understanding the regulation of enzymes in metabolic pathways, such as those responsible for amino acid biosynthesis, is to follow enzyme levels throughout the growth curve of higher plant cells in suspension culture. The rise and fall of enzyme levels can be traced as a function of physiological stage of growth Subculturing, as typically carried out by low-factor dilution of stationary phase cells, yields a system suitable for the study of changes in enzyme and metabolite levels that accompany the transition from stationary-phase physiology to exponential-phase physiology. However, the short duration of exponential growth in such subculture protocols is inadequate to avoid carryover effects from previous stationary-phase physiology. Suspension cultures of Nicotiana silvestris Speg, et Comes (2N = 24) were used to demonstrate substantial carryover levels of acid phosphatase, alkaline phosphatase and protease activities. A subculture routine is described for maintaining cell populations in exponential phase indefinitely. About 10 generations of sustained exponential growth is required to approach a true balanced state of exponential growth. Such exponential phase populations consist of cells termed EE cells. EE-cell populations were similar to cells that have been in exponential phase for only a few generations (E cells), with respect to doubling time (about 40 h) and to minimal density of diluted populations able to resume growth (about 500 cells ml?1). EE cells possess a high content of soluble protein; they are smaller and more aggregated than are E cells. Upon dilution into fresh medium, EE cells resume exponential growth without a lag. In contrast to E cells, EE cells exhibit properties of balanced growth, since proportionate increases in cell number, dry weight, wet weight and packed-cell volume were observed. E cells, sampled at different elapsed times of growth, are likely to differ in metabolite, enzyme and cell properties, whereas EE cells exhibit near-constant properties.  相似文献   

12.
D G Macejak  P Sarnow 《Enzyme》1990,44(1-4):310-319
Translation of the mRNA encoding the immunoglobulin heavy-chain binding protein (BiP) is enhanced in poliovirus-infected cells at a time when translation of host cell mRNAs is inhibited. To test whether the mRNA of BiP is translated by internal ribosome binding, like picornaviral RNAs, we constructed plasmids for the expression of dicistronic hybrid RNAs containing the 5' noncoding region (5'NCR) of BiP as an intercistronic spacer element between two cistrons. Expression of these dicistronic mRNAs in mammalian cells resulted in efficient translation of both cistrons, demonstrating that the 5'NCR of BiP can confer internal ribosome binding to a heterologous RNA. This result suggests that the mRNA encoding BiP is bifunctional and can be translated by an internal ribosome-binding mechanism, in addition to the conventional cap-dependent scanning mechanism. This is the first demonstration of a cellular mRNA that can be translated by internal ribosome binding, and implies that this may be a mechanism for cellular translational regulation.  相似文献   

13.
DNA preparations obtained from several tissues of Rhynchosciara americana and two related species, R. milleri and R. papaveroi, were hybridized to R. americana rRNA. The percentage of hybridization was found to be higher in tissues with low polyteny than in tissues with high polyteny, suggesting a relationship between the amount of rDNA and the tissue polyteny. This could be explained by under-replication of ribosomal cistrons in polytene cells, such as those from the salivary gland. Only slight tissue-dependent changes in the percentages of hybridization can be observed in heterologous hybridization using Xenopus laevis rRNA. The possibility that these experiments could not detect differences in the amount of ribosomal cistrons among tissues is discussed. The female:male ratio for the percentages of hybridization in the salivary gland of R. americana agrees with the results obtained by in situ hybridization experiments (16, 17) which have shown that the rRNA cistrons are distributed among chromosomes other than chromosome X.  相似文献   

14.
Summary Eleven cistrons of genes active in lytic growth of phage P22 were classified by phenotypic expression of their amber mutants in nonpermissive Salmonella typhimurium. Seven cistrons code for late functions according to their lysis positive phenotype. Of the remaining four cistrons one codes for lysozym synthesis, two for phage directed DNA synthesis and one seems to be engaged in regulation of late gene expression.The majority of the experiments presented are a part of the dissertation of H. D. Dopatka submitted 1971 to the University of Göttingen.  相似文献   

15.
Additional experiments with homologous as well as heterologous hybridization confirmed our previous finding in Sciara coprophila that XX females have nearly twice the number of ribosomal RNA cistrons as XO males. A comparison between two different X' chromosomes revealed that only the one carrying the irradiation-induced Wavy mutation has a deletion of 70% of its ribosomal RNA cistrons as compared to the standard X. The deletion is relatively stable, and the remaining ribosomal RNA cistrons donot appear to undergo disproportionate replication or magnification as in Drosophila. Homologous hybridization experiments revealed an unusually low reiteration of ribosomal RNA cistrons in this fly, 45 gene copies per X chromosome. The question is raised as to whether such a low number of cistrons may be related to the unusual nucleolar condition encountered in the Sciaridae.  相似文献   

16.
The growth of rat kidney proximal tubule cells was monitored continuously by the cellular incorporation of [methyl-(14)C] thymidine using scintillating microplates. The radioisotope had no effect on cell proliferation over a 5 day period, neither was it extensively converted to thymine. Leibovitz L-15 medium supplemented with bicarbonate proved a good growth medium and its high levels of carbohydrates and amino acids facilitated the appearance of intermediates in the cells' metabolism of additional radioactive amino acids. Kidney proximal tubule cells had a greater potential to process amino acids than BHK-21 cells. The utilization of amino acids by proximal tubule cells differed from that of other organs. The amino acids could be classified into three classes. Members of the first type were only used for protein synthesis (arginine, lysine, histidine and tyrosine). The second class of amino acids yielded only one or two metabolites (leucine and isoleucine), while the last type gave more than two metabolites (alanine, aspartate, glycine, methionine, proline and valine).  相似文献   

17.
Because it is now clear that archaebacteria may be as distinct from eubacteria as either group is from eukaryotic cells, and because a specifically archaebacterial ancestry has been proposed for the nuclear-cytoplasmic component of eukaryotic cells, we undertook to characterize, for the first time, the ribosomal RNA cistrons of an archaebacterium (Halobacterium halobium). We found these cistrons to be physically linked in the order 16S-23S-5S, and obtained evidence that they are also transcribed from a common promoter(s) in the order 5'-16S-23S-5S-3'. We showed that, although slightly larger immediate precursors of 16S and 23S are readily seen, no common precursor of both 16S and 23S can be easily detected in vivo. In all these respects the archaebacterium H. halobium is like a eubacterium and unlike the nuclear-cytoplasmic component of eukaryotic cells. We found, however, that it differs from eubacteria of comparable (large) genome size in having only one copy of the rRNA gene cluster per genome.  相似文献   

18.
Ornithine decarboxylase activity (ODC) increased about 7 fold 6--8 h following 10mM asparagine (ASN) addition to confluent cultures that had been previously serum deprived and then placed in a salts/glucose medium. Optimal concentrations of dibutyryl cAMP (dB cAMP) when incubated with the ASN caused up to a 50 fold increase in the activity of this enzyme after 7--8 h. The enhancement of ODC activity by ASN and dB cAMP was not sensitive to continuous (0--7 h) treatment with actinomycin D but similar treatment with cycloheximide depressed enzyme activity 40--60%. The synergistic stimulation of ODC activity by dB cAMP added with ASN was dose dependent and the dB cAMP stimulation of ODC activity displayed an absolute requirement for ASN when cells were maintained in the salts/glucose medium. The addition of dB cAMP always further enhanced ODC activity above the levels produced by addition of various levels of ASN (1 to 40mM) to the salts/glucose medium. Other agents which elevated cAMP levels such as 1-methyl-3-isobutylxanthine (IBMX) also enhanced ODC activity when administered with ASN. Additionally, treatment with sodium butyrate at concentrations ranging from 0.001mM to 5.0mM did not elevate ODC activity above the activity obtained with ASN alone. Addition of dB cAMP at various times after placing cells in salts/glucose medium with ASN further stimulated ODC activity only when added during the first 3-4 h. These results demonstrate the involvement of cAMP in the ASN mediated stimulation of ODC activity using cells maintained in a salts/glucose medium.  相似文献   

19.
Proceeding from the amino acid sequence of a number of proteins, with the help of a special computer program we have determined the frequency of pyrimidine isopliths of different length, the degree of clustering and the degree of asymmetry of complementary chains of the corresponding DNA cistrons, as well as the range of variation of these parametres which depends on the code degeneracy. The degree of asymmetry of the chains of DNA cistrons (H/L), calculated for 255 proteins of a known composition, may vary from 0.7 to 1.8. For 90% of these proteins the mean Py/Pu ratio in the coding chain of DNA is above 1. The conclusion has been made that the majority of amino acids contained in the proteins is coded for by purine triplets. It was found that the distribution of pyrimidine isopliths between DNA cistrons coding for different proteins is other than random and has a "DNA-like" character. The degree of clustering of pyrimidines (beta) in cistrons of different proteins may vary from 6.0 to 14.3. The cistrons of some proteins were found to contain long lyrimidine fragments with about 24 residues. A positive correlation (r2 = 0.74) was found to exist between the degree of clustering of pyrimidines and the degree of asymmetry of the chains corresponding to different proteins of DNA cistrons.  相似文献   

20.
The development of a transductional method for complementation tests between transfer-deficient mutants of the narrow-host-range R plasmic R91-5 of Pseudomonas aeruginosa has allowed the indentification of cistrons involved in the conjugal transfer of this plasmid. Complementation tests performed between transfer-deficient mutants characterized phenotypically with respect to sensitivity to donor-specific phage, ability to inhibit the replication of phage G101, and expression of entry-exclusion has identified a minimum of 10 transfer cistrons. Although most mutagen-induced mutants were relatively heterogeneous and appeared to be affected in a single cistron only, a high proportion of mutants isolated after selection for donor-specific phage resistance had deletions but always included tra Y. Mutants selected directly on the basis of transfer deficiency which also became donor-specific phage resistant fell into all 10 cistrons, suggesting that many R91-5 transfer cistrons are concerned with the synthesis of sex pili and other surface structures necessary for conjugal transfer. Conversely, most retaining donor-specific phage sensitivity belonged to one cistron, whereas transfer-deficient mutants which had also lost the ability to inhibit the replication of phage G101 comprised four cistrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号