首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Protozooplankton were sampled in the iceedge zone of the Weddell Sea during the austral spring of 1983 and the austral autumn of 1986. Protozooplankton biomass was dominated by flagellates and ciliates. Other protozoa and micrometazoa contributed a relatively small fraction to the heterotrophic biomass. During both cruises protozoan biomass, chlorophyll a concentrations, phytoplankton production and bacterial biomass and production were low at ice covered stations. During the spring cruise, protozooplankton, phytoplankton, and bacterioplankton reached high concentrations in a welldeveloped ice edge bloom 100 km north of the receding ice edge. During the autumn cruise, the highest concentrations of biomass were in open water well-separated from the ice edge. Integrated protozoan biomass was <12% of the biomass of phytoplankton during the spring cruise and in the autumn the percentages at some stations were >20%. Bacterial biomass exceeded protozooplankton biomass at ice covered stations but in open water stations during the fall cruise, protozooplankton biomass reached twice that of bacteria in the upper 100m of the water column. The biomass of different protozoan groups was positively correlated with primary production, chlorophyll a concentrations and bacterial production and biomass, suggesting that the protozoan abundances were largely controlled by prey availability and productivity. Population grazing rates calculated from clearance rates in the literature indicated that protozooplankton were capable of consuming significant portions of the daily phyto- and bacterioplankton production.  相似文献   

2.
Anaerobic phagotrophic protozoa may play an important role in the carbon flux of chemically stratified environments, especially when phototrophic sulfur bacteria account for a high proportion of the primary production. To test this assumption, we investigated the vertical and temporal distribution of microbial heterotrophs and of autotrophic picoplankton throughout the water column of the meromictic coastal lake Faro (Sicily, Italy), in the summer of 2004, coinciding with a bloom of brown-colored green sulfur bacteria. We also assessed the grazing impact of ciliated and flagellated protozoa within the sulfur bacteria plate using a modification of the fluorescently labeled bacteria uptake approach, attempting to minimize the biases intrinsic to the technique and to preserve the in situ anoxic conditions. Significant correlations were observed between ciliate biomass and bacteriochlorophyll e concentration, and between heterotrophic nanoflagellate biomass and chlorophyll a concentration in the water column. The major predators of anaerobic picoplankton were pleuronematine ciliates and cryptomonad flagellates, with clearances of 26.6 and 9.5 nL per cell h−1, respectively, and a cumulative impact on the picoplankton gross growth rate ranging between 36% and 72%. We concluded that protozoan grazing channels a large proportion of anaerobic picoplankton production to higher trophic levels without restraining photosynthetic bacteria productivity.  相似文献   

3.
The distribution of primary components of the microbial community (autotrophic pico- and nanoplankton, phototrophic bacteria, heterotrophic bacteria, microscopic fungi, heterotrophic flagellates, ciliates and heliozoa) in the water column of Lake Shira, a steppe brackish-water, stratified lake in Khakasia, Siberia (Russia), were assessed in midsummer. Bacterioplankton was the main component of the planktonic microbial community, accounting for 65.3 to 75.7% of the total microbial biomass. The maximum concentration of heterotrophic bacteria were recorded in the monimolimnion of the lake. Autotrophic microorganisms contributed more significantly to the total microbial biomass in the pelagic zone (20.2–26.5%) than in the littoral zone of the lake (8.7–14.9%). First of all, it is caused by development of phototrophic sulphur bacteria at the oxic-anoxic boundary. The concentrations of most aerobic phototrophic and heterotrophic microorganisms were maximal in the upper mixolimnion. Heterotrophic flagellates dominated the protozoan populations. Ciliates were minor component of the planktonic microbial community of the lake. Heterotrophic flagellates were the most diverse group of planktonic eucaryotes in the lake, which represented by 36 species. Facultative and obligate anaerobic flagellates were revealed in the monimolimnion. There were four species of Heliozoa and only three of ciliates in the lake.  相似文献   

4.
1. The temporal abundance and composition of the plankton of a continental Antarctic lake (Lake Druzhby) situated in the Vestfold Hills, Eastern Antarctica was investigated from December 1992 to December 1993. The system was dominated by microbial plankton (cyanobacteria, heterotrophic bacteria and protozoans) with few metazoans. 2. Chlorophyll a concentrations ranged between 0.15 and 1.1 μg l–1 and showed highest levels from late winter to spring. 3. Heterotrophic bacteria ranged between 75 and 250 × 106 l–1 with highest abundances in late winter/spring. Mean bacterial biovolumes showed considerable seasonal variation (0.05–0.31 μm3). Largest biovolumes occurred in summer and this was the time of highest community biomass. 4. Heterotrophic nanoflagellates reached highest abundances in late summer (maximum 14 × 105 l–1). Their mean biovolume also exhibited considerable seasonal variation, ranging between 1.77 and 27.0 μm3, with largest size resulting in community biomass peaking in early summer. Ciliated protozoa were poorly represented and sparse. Phototrophic nanoflagellates were sparse in this lake; instead the phototrophic plankton was dominated by a small rod-shaped cyanobacterium which constituted the largest carbon pool in the system. It was common throughout the year, its biomass peaking in autumn. Its presence is discussed in relation to lake morphometry and light climate. 5. Heterotrophic flagellate grazing rates ranged from 6.78 bacteria cell–1 day–1 at 2 °C to 11.8 bacteria cell–1 day–1 at 4 °C. They remove around 2% of the bacterial carbon pool per day during summer and winter. 6. Nutrient levels were low and recorded in pulses. Dissolved and particulate organic carbon were also low, usually less than 3 mg l–1 and 600 μg l–1, respectively. The carbon pools were derived from autochthonous sources. This lake system is driven by bottom-up forces and lacks top-down control, which fits into the picture currently seen for continental Antarctic lakes.  相似文献   

5.
A seasonal study of dominant protozoa, heterotrophic flagellatesand ciliates, was performed along a primary production gradientin the northern Baltic Sea. The abundances of protozoa increasedwith increasing primary production from north to south. Smallcells dominated in the low productive north, while larger cellsbecame more dominant in the south. The highest biovolume concentrationof protozoa was observed in summer in the north and during springin the south. The seasonal succession of protozoa followed ageneral pattern: choanoflagellates, large flagellates and ciliatesshowed peaks during spring and autumn, while small bacterivorousnanoflagellates peaked during the summer. An in situ experimentindicated that the inverse relationship between loricated choanoflagellatesand other small flagellates may be explained by a seasonal changein the predator community and a seasonal change in the accessto surface-attachment sites. Principal component regressionanalyses including all data showed that 46% of the variationof small flagellates and 20% of the variation of large flagellatescould be explained by temperature and bacterial biomass. Ciliatesshowed a significant relationship to latitude and salinity,explaining 12–24% of the variation. In conclusion, thefield data indicated that the protozoan community in generalwas resource controlled.  相似文献   

6.
Understanding microbial food web dynamics is complicated by the multitude of competitive or interdependent trophic interactions involved in material and energy flow. Metabolic inhibitors can be used to gain information on the relative importance of trophic pathways by uncoupling selected microbial components and examining the net effect on ecosystem structure and function. A eukaryotic growth inhibitor (cycloheximide), a prokaryotic growth inhibitor (antibiotic mixture), and an inhibitor of photosynthesis (DCMU) were used to examine the trophodynamics of microbial communities from the tidal creek in North Inlet, a salt marsh estuary near Georgetown, South Carolina. Natural microbial communities were collected in the spring, summer, and fall after colonization onto polyurethane foam substrates deployed in the tidal creek. Bacterial abundance and productivity, heterotrophic ciliate and flagellate abundance, and phototrophic productivity, biomass, and biovolume were measured at five time points after inhibitor additions. The trophic responses of the estuarine microbial food web to metabolic inhibitors varied with season. In the summer, a close interdependency among phototrophs, bacteria, and protozoa was indicated, and the important influence of microzooplanktonic nutrient recycling was evident (i.e., a positive feedback loop). In the fall, phototroph and bacteria interactions were competitive rather than interdependent, and grazer nutrient regeneration did not appear to be an important regulatory factor for bacterial or phototrophic activities. The results indicate a seasonal shift in microbial food web structure and function in North Inlet, from a summer community characterized by microbial loop dynamics to a more linear trophic system in the fall. This study stresses the important role of microbial loops in driving primary and secondary production in estuaries such as North Inlet that are tidally dominated by fluctuations in nutrient supply and a summer phytoplankton bloom.  相似文献   

7.
Bacteria were deposited in tubes as compact pellets by centrifuging suspensions of cultured Vibrio at stationary phase. Numbers and protein biomass of flagellates added to these tubes and of the Vibrio, were followed and compared with the growth of the same and other protists on identical, uncentrifuged Vibrio. The flagellates Bodo saliens and Caecitellus parvulus, which could not be seen to multiply in tubes of suspended bacteria, grazed deposited bacteria actively as did the more versatile flagellate Cafeteria roenbergensis. The growth of these flagellates and their consumption of deposited bacteria were very similar to those of the flagellate Pteridomonas danica or the ciliate Uronema marinum fed with suspended bacteria, although deposit-feeders grew more slowly. Gross growth efficiencies (30-60%) of deposit-feeding flagellates were similar to those of the suspension-feeding protists. Caecitellus consumed 55 Vibrio to produce one flagellate, while 4,500 Vibrio were consumed to produce one Uronema. Surface-feeding flagellates are shown to be efficient bacterivores, capable of restricting the numbers of bacteria deposited on surfaces just as other protozoa control numbers of suspended bacteria.  相似文献   

8.
Summary Two cruises of the ARA/Islas Orcadas (late winter/early spring 1978 and late summer/early fall 1979) provided data which show that temporal variability of phytoplankton biomass and productivity in the oceanic wates of the Southwest Atlantic and Scotia Sea is insignificant when compared to the influence of geographical variability. Two bloom stations sampled during the late winter/early spring cruise had chlorophyll a concentrations and productivity values an order of magnitude higher than waters sampled from the same locations the following late summer/early fall. However, a comparison of 10 paired stations from the two cruises indicated no seasonal trend, as measured values of chlorophyll a and productivity from the first cruise were randomly larger or smaller than values measured during the second cruise. Consideration of individual stations from both seasons suggests the need to re-examine widely held notions regarding the effect of the Polar Front Zone and the island-mass effect on phytoplankton abundance and productivity. Higher-than-expected standing stock and productivity values at some open-ocean stations and at some stations within the Polar Front Zone indicate that looking for specific factors which promote localized enhancement or impoverishment of phytoplankton would be more useful than continuing with attempts to generalize Antarctic productivity data into broad seasonal or geographical patterns.In memory of Mary Alice McWhinnie (1922–1980)  相似文献   

9.
Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9 × 103 cells ml–1) and ciliates (6.1 cells ml–1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9 × 106 bacteria 1–1h–1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria. Correspondence: C. Amblard.  相似文献   

10.
Analysing the results of various authors recent studies in the pelagic region of the Baltic revealed that protozoan biomass is in the same range or even higher than metazooplankton biomass. The dominant groups of planktonic protozoans are heterotrophic pico- and nanoflagellates (various taxonomic groups), large heterotrophic flagellates (mainly dinoflagellates) and ciliates. Regularly the spring bloom of phytoplankton is accompanied by a maximum of protozoan biomass which declines in early summer as a result of intensive grazing pressure by metazooplankton and changing food conditions. The analysis of results from different stations indicated that biomasses of protozoans increase with an increasing degree of eutrophication. Several trophic levels within the microbial web should be added to the traditional view on the pelagic food web of the Baltic. Our knowledge regarding the quantitative aspect of the microbial matter flux of the Baltic is very limited up to now and complex ecological (and taxonomical) studies using standardized methods including all protozoan components are necessary. Protozoans (various trophic groups and levels), besides bacteria, should be viewed as the metabolically most active heterotrophic component in the pelagic region of the Baltic, their activity should increase with an increasing degree of eutrophication.  相似文献   

11.
The abundance and biomass of heterotrophic flagellates were estimated monthly in sediments of Botany Bay during March 1999-February 2000. The annual abundance and biomass were in the ranges of 0.46-4.70 x 10(5) cells/cm(3) and of 0.30-8.61 micro g C/cm(3), respectively. The majority of heterotrophic flagellates (93-100%) were less than 10 mm in length and few flagellates were larger than 10 mm. Of the total microbial carbon biomass, heterotrophic flagellates made up about 5% (but at times up to 35%). The contribution of heterotrophic flagellates varied from month to month, and among the sites. The abundance of heterotrophic flagellates was negatively correlated with sediment grain size and positively correlated with the abundance of bacteria, algae (autotrophic flagellates and diatoms), and their probable grazers. A best subsets regression analysis showed that bacterial and algal abundance are the most important factors controlling the abundance of heterotrophic flagellates. When the previously reported grazing rates on bacteria were applied, heterotrophic flagellates would consume a maximum of 64% of bacterial standing stock daily in Botany Bay, suggesting that heterotrophic flagellates are important as bacterivores. However, the importance of heterotrophic flagellate grazing probably varies significantly among the sites and from month to month.  相似文献   

12.
Anaerobically digested sewage sludge with a variety of moisture content, namely 81%, 86%, 90% and 98%, were anaerobically cultured at 35 degrees C under light. Phototrophic bacteria grew in the 86% moisture sludge (bacteriochlorophyll a, 0.46 g/L), 90% sludge (bacteriochlorophyll a, 0.36 g/L) and 98% sludge (bacteriochlorophyll a, 0.04 g/L) with methane production. Phototrophic bacteria could not grow in the 81% moisture sludge (bacteriochlorophyll a 0.004 g/L). Phototrophic bacteria could assimilate about 46% of the extracellular ammonium in the 90% moisture sludge. Phototrophic bacteria utilized organic compounds competing with methanogens; therefore, methane yield from the 90% moisture sludge under the light conditions was lower than that under the dark conditions. Phototrophic bacteria could grow in anaerobically digested sludge with relatively low moisture content, and assimilated extracellular ammonium in the sludge. The quality of digested sludge with phototrophic bacterial biomass for fertilizer could be improved compared with that without phototrophic bacterial biomass.  相似文献   

13.
Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.  相似文献   

14.
Abstract Predation rates of flagellate and ciliate protozoa on the bacterioplankton of Butrón River (Spain) were determined from FLB (fluorescently labelled bacteria) uptake rates. Bacterial and ciliate protozoa counts were higher when higher water temperature was recorded. Flagellate counts did not show this pattern, which suggested predation of flagellates by other organisms, or some other different nutritional mode besides phagotrophy. Average individual ciliate predation rates were up to 40-times higher than those of flagellates. These results were compared with similar data obtained from other authors in several aquatic systems. However, the population predation rates of flagellate protozoa were on average 6-times higher than that of ciliate protozoa, due to the low population numbers of the latter. Thus, flagellate protozoa can be considered as more important bacterial consumers than ciliates in this aquatic system.  相似文献   

15.
To examine the extent of the microbial food web in suboxic waters of a shallow subtropical coastal lagoon, the density and biomass of bacteria and protozooplankton were quantified under different dissolved oxygen (DO) levels. In addition, bottom waters of a stratified site were compared with bottom waters of a homogeneous site under periods of high and low biological oxygen production/consumption in the lagoon. At the stratified site, microbial biomass decreased with oxygen decline, from oxia to suboxia, with a recovery of the initial total biomass after a 20-day period of persistent suboxia. A peak in density and biomass of purple sulfur bacteria (PSB) (90 μg C L(-1)) occurred in the suboxic waters 20 days prior to the peak in biomass of ciliates >50 μm (Loxophyllum sp. of 150 μm) (160 μg C L(-1)), demonstrating a top down biomass control. Ciliates >50 μm were positively correlated with PSB and bacteriochlorophyll a (photosynthetic pigment of PSB). Total protozoan biomass reached 430 μg C L(-1) in the suboxic waters of the stratified site, with ciliates >50 μm accounting for 90% of the total ciliate biomass and of 55 % of biomass of protozoa. At the homogeneous site, total protozoan biomass was only 66 μg C L(-1), where flagellates and ciliates <25 μm were the dominant microorganisms. Therefore, as light is available for primary producers in the bottom waters of shallow stratified coastal lagoons or estuaries, one can expect that high primary production of PSB may favor a specialized microbial food web composed by larger microorganisms, accessible to zooplankton that tolerate low DO levels.  相似文献   

16.
The relative contribution of protozoan biomass to whole planktoniccommunities (phytoplankton, picophytoplankton, bactenoplankton,protozoa and zooplankton) and factors important in controllingprotozoan abundance were investigated at two eutrophic coastalsites and two meso-oligo trophic offshore sites in the centralbasin of Lake Erie, USA, from May through August in 1993 and1994. The abundance and biomass of heterotrophic nanoflagellates(HNAN) and ciliates (and also other plankton components) weresignificantly higher at the coastal sites than at the offshoresites. HNAN dominated numerically at all sites most of the time,but the biomass of phototrophic nano flagellates (PNAN) wasas high as that of HNAN, indicating that the average size ofPNAN was larger. Percent protozoan carbon content was alwayshigher at the offshore sites than the coastal sites, due torelatively lower phyto-and zooplankton biomass at the offshoresites. The percent contribution of heterotrophic protozoans(both HNAN and ciliates) also showed the same trend. Correlationsbetween protozoan abundance and other parameters were strongerat the offshore sites than the coastal sites. When correlatingdata over the coastal to offshore transect, both HNAN and ciliateabundances were significantly correlated with total phosphorus(TP) and the abundance of bacteria, nauplii and copepods. Theseresults suggest that both bottom-up and top-down factors maybe important in controlling protozoan abundance, and suggestthat protozoans are important as a carbon link in the microbialfood web of Lake Erie. 1Present address: Ecosystem Restoration Department, South FloridaWater Management District, West Palm Beach, FL 33416-4680, USA  相似文献   

17.
Composition and seasonal dynamics of phytoplankton, bacteria,and zooplankton (including heterotrophic flagellates, ciliates,rotifers and crustaceans) were studied in 55 lakes in NorthernGermany with different trophic status, ranging from mesotrophicto hypertrophic. Mean abundance and biomass of all groups increasedsignificantly with trophic level of the lake, but bacteria andmetazooplankton showed only a weak correlation and a slightincrease with chlorophyll concentration. Composition of phytoplanktonshowed a dominance of cyanobacteria in hypertrophic lakes, whereasthe importance of chrysophytes and dinophytes decreased withan increase in trophic status. Protozoans (heterotrophic flagellatesand ciliates) made up 24% (mesotrophic lakes) to 42% (hypertrophiclakes) of total zooplankton biomass on average, and were dominatedby ciliates (62–80% of protozoan biomass). Seasonally,protozoans can build up to 60% of zooplankton biomass in spring,when heterotrophic flagellates can contribute  相似文献   

18.
A model food chain was established to investigate the influence of grazing by flagellates on bacteria degrading toluene in batch culture. The rate of toluene consumed by a Pseudomonas sp. strain PS+ (max. 0.37 fmol cell(-1) h(-1)) was significantly higher in the presence of the bacterivorous flagellate Heteromita globosa (max. 1.38 fmol cell(-1) h(-1)). A maximum increase of up to 7.5 times was observed in the rate of toluene consumed by these bacteria during exponential growth of this flagellate. Carbon conversion efficiency (CCE) of bacteria to flagellate biomass was estimated to be 33.4% based on measured biovolumes and published values for carbon contents. However, the CCE for toluene-derived carbon was lower (max. 4.9%) when calculations were based on incorporation of [ring-U-(14)C]toluene into biomass of flagellates grazing on labelled bacteria. The findings suggest a potential role for flagellates in bioremediation processes.  相似文献   

19.
The abundance and biomass of bacterioplankton, phototrophic picoplankton, and heterotrophic nanoflagellates has been determined in lakes, rivers, and reservoirs located in the Valley of the Lakes and Great Lakes Depression (Mongolia). The species richness of the heterotrophic flagellates and their consumption of bacteria are estimated. Pico- and nanoplankton are the most abundant in shallow mineral lakes Orog and Tatsyn and in the freshwater Durgun Reservoir. Heterotrophic nanoflagellates consume 26–92% (on average 66%) of the daily bacterioplankton production. Thus, flagellates are important in the transfer of bacterial carbon to the higher levels of planktonic trophic webs. A total of 30 species and their forms of heterotrophic flagellates from 14 large taxa are identified. The highest species diversity of these protists are found in the Durgun and Taishyr reservoirs.  相似文献   

20.
The spatio-temporal distribution of the heterotrophic nanoflagellates (HNF) and ciliates was monitored in the reservoir of Esch-sur-Sûre during the year 1999. Three main periods of protozoan development were observed, in early April, early May, and in July. On the basis of the seasonal dynamics, it appeared that the early spring development of protozoa was probably not controlled by resources or predators. The second protozoan development was progressively controlled by the increase of metazooplankton density that led to the clear water phase characterised by very low protozoan densities and biomasses. A summer development of protozoa was possible thanks to the development of bacteria and moderate metazooplankton densities due to the appearance of non-edible algae. Prorodontida, Halteriida and Strombidiida were the dominant ciliates in the upper part of the water column. A development of Tintinnida was moreover observed in spring whereas Philasterida and Sessilida developed in winter and summer. Ciliates occupied the entire water column in spring and were concentrated in the epilimnion and the metalimnion during the summer period where they fed on bacteria and algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号