首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli   总被引:1,自引:0,他引:1  
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.  相似文献   

2.
Flavobacterium psychrophilum is a psychrotrophic, fish-pathogenic bacterium belonging to the Cytophaga-Flavobacterium-Bacteroides group. Tn4351-induced mutants deficient in gliding motility, growth on iron-depleted media, and extracellular proteolytic activity were isolated. Some of these mutants were affected in only one of these characteristics, whereas others had defects in two or more. FP523, a mutant deficient in all of these properties, was studied further. FP523 had a Tn4351 insertion in tlpB (thiol oxidoreductase-like protein gene), which encodes a 41.4-kDa protein whose sequence does not exhibit high levels of similar to the sequences of proteins having known functions. TlpB has two domains; the N-terminal domains has five transmembrane regions, whereas the C-terminal domains has the Cys-X-X-Cys motif and other conserved motifs characteristic of thiol:disulfide oxidoreductases. Quantitative analysis of the thiol groups of periplasmic proteins revealed that TlpB is required for reduction of these groups. The tlpB gene is part of the fpt (F. psychrophilum thiol oxidoreductase) operon that contains two other genes, tlpA and tpiA, which encode a thiol:disulfide oxidoreductase and a triosephosphate isomerase, respectively. FP523 exhibited enhanced biofilm formation and decreased virulence and cytotoxicity. Complementation with the tlpB loci restored the wild-type phenotype. Gliding motility and biofilm formation appear to be antagonistic properties, which are both affected by TlpB.  相似文献   

3.
The formation of disulfide bonds is an essential step in the folding of many glycoproteins and secretory proteins. Non-native disulfide bonds are often formed between incorrect cysteine residues, and thus the cell has dedicated a family of oxidoreductases that are thought to isomerize non-native bonds. For an oxidoreductase to be capable of performing isomerization or reduction reactions, it must be maintained in a reduced state. Here we show that most of the oxidoreductases are predominantly reduced in vivo. Following oxidative stress the oxidoreductases are quickly reduced, demonstrating that a robust reductive pathway is in place in mammalian cells. Using ERp57 as a model we show that the reductive pathway is cytosol-dependent and that the component responsible for the reduction of the oxidoreductases is the low molecular mass thiol glutathione. In addition, ERp57 is not reduced following oxidative stress when inhibitors of glutathione synthesis or glutathione reduction are added to cells. Glutathione directly reduces ERp57 at physiological concentrations in vitro, and biotinylated glutathione forms a mixed disulfide with ERp57 in microsomes. Our results demonstrate that glutathione plays a direct role in the isomerization of disulfide bonds by maintaining the mammalian oxidoreductases in a reduced state.  相似文献   

4.
5.
Flavobacterium psychrophilum is a psychrotrophic, fish-pathogenic bacterium belonging to the Cytophaga-Flavobacterium-Bacteroides group. Tn4351-induced mutants deficient in gliding motility, growth on iron-depleted media, and extracellular proteolytic activity were isolated. Some of these mutants were affected in only one of these characteristics, whereas others had defects in two or more. FP523, a mutant deficient in all of these properties, was studied further. FP523 had a Tn4351 insertion in tlpB (thiol oxidoreductase-like protein gene), which encodes a 41.4-kDa protein whose sequence does not exhibit high levels of similar to the sequences of proteins having known functions. TlpB has two domains; the N-terminal domains has five transmembrane regions, whereas the C-terminal domains has the Cys-X-X-Cys motif and other conserved motifs characteristic of thiol:disulfide oxidoreductases. Quantitative analysis of the thiol groups of periplasmic proteins revealed that TlpB is required for reduction of these groups. The tlpB gene is part of the fpt (F. psychrophilum thiol oxidoreductase) operon that contains two other genes, tlpA and tpiA, which encode a thiol:disulfide oxidoreductase and a triosephosphate isomerase, respectively. FP523 exhibited enhanced biofilm formation and decreased virulence and cytotoxicity. Complementation with the tlpB loci restored the wild-type phenotype. Gliding motility and biofilm formation appear to be antagonistic properties, which are both affected by TlpB.  相似文献   

6.
An NADPH-dependent glutathione: disulfide oxidoreductase (thiol-transferase) has been identified in and partially purified (12.3-fold) from adenohypophysial cytosol. The enzyme is specific for NADPH and reduced glutatione, but the disulfide substrates include a wide size range (glutathione, cystine, RNase, oxytocin, vasopressin, monomeric and oligomeric growth hormone and prolactin). It also utilizes secretory granule membrane proteins. Substrate specificity studies (including utilization of cystine and failure to utilize insulin) and physico-chemical properties (M.W. 180,000) distinguish this enzyme from other glutathione: disulfide oxidoreductases. This thioltransferase may play a regulatory role in the hormone secretory process by control of the thiol: disulfide oxidation state of disulfide-bonded oligomers or of granule membrane proteins.  相似文献   

7.
Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases.  相似文献   

8.
ABSTRACT: BACKGROUND: Chronic gastritis, peptic ulcer disease, and gastric cancer have been shown to be related toinfection with Helicobacter pylori (H. pylori). Two major virulence factors of H. pylori,CagA and VacA, have been associated with these sequelae of the infection. In this study, totalDNA was isolated from gastric biopsy specimens to assess the cagA and vacA genotypes. RESULTS: Variations in H. pylori cagA EPIYA motifs and the mosaic structure of vacA s/m/i/dayregions were analysed in 155 H. pylori-positive gastric biopsies from 71 individuals usingPCR and sequencing. Analysis of a possible association between cagA and vacA genotypesand gastroduodenal pathogenesis was made by logistic regression analysis. We found that H. pylori strains with variation in the number of cagA EPIYA motif variants present in the samebiopsy correlated with peptic ulcer, while occurrence of two or more EPIYA-C motifs wasassociated with atrophy in the gastric mucosa. No statistically significant relation betweenvacA genotypes and gastroduodenal pathogenesis was observed. CONCLUSIONS: The results of this study indicate that cagA genotypes may be important determinants in thedevelopment of gastroduodenal sequelae of H. pylori infection. In contrast to other studies,vacA genotypes were not related to disease progression or outcome. In order to fullyunderstand the relations between cagA, vacA and gastroduodenal pathogenesis, themechanisms by which CagA and VacA act and interact need to be further investigated.  相似文献   

9.
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol‐disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active‐site motif embedded in their thioredoxin‐like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol‐disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram‐negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.  相似文献   

10.
Ⅳ型分泌系统(T4SS)广泛存在于革兰阴性菌中,细菌可通过该系统将生物大分子或毒力因子等运输至靶细胞中并发挥相应功能。目前在H. pylori中已发现了至少三种T4SS,其中研究较为透彻的是cag致病岛(cagPAI)编码的cagT4SS系统,此外可塑区编码的tfs3系统和comB系统也有相关的报道。H. pylori的T4SS作为其与致病相关的重要结构已受到很多学者关注,对该菌T4SS系统的研究有助于进一步明确H. pylori的致病机制,并为临床诊断和治疗相关胃十二指肠疾病提供新的靶点。本文将对H. pylori的T4SS相关研究进展作一简要综述。  相似文献   

11.
Aims:  To investigate the main genotypic virulence markers and the phenotypic features of an environmental Helicobacter pylori strain, named MDC1.
Methods and Results:  The H. pylori MDC1 genotypic status was evaluated by PCR amplification. The mosaicism in vac A alleles was expressed by the s1m1 allelic combination, as found in strains which are strong vacuolating cytotoxin producers; the number of cag A variable EPIYA motifs displayed P1P2P3P3 pattern and the ice A1 was recorded between the ice A allelic types and the bab A2 gene found in strains causing more severe disease. The biofilm formation was evaluated on a polystyrene surface in static conditions by scanning electron microscopy and confocal scanning laser microscopy. Helicobacter pylori MDC1 displayed a dense mature biofilm with cells in a coccoid morphology persistent in time in which the expression of the lux S gene, related to the quorum-sensing signalling, was always detected.
Conclusions:  Helicobacter pylori MDC1 strain had the main virulence markers closely related to gastric pathogenesis and displayed a well-structured biofilm which allowed this bacterium to be more protected in the environment.
Significance and Impact of the Study:  The persistence of the environmental virulent H. pylori strain in a clustered state suggests a long-term survival of this bacterial community outside of the host, enabling the bacterial transmission with important clinical repercussions.  相似文献   

12.
Li Q  Hu HY  Wang WQ  Xu GJ 《Biological chemistry》2001,382(12):1679-1686
The thiol/disulfide oxidoreductases play important roles in ensuring the correct formation of disulfide bonds, of which the DsbE protein, also called CcmG, is the one implicated in electron transfer for cytochrome c maturation in the periplasm of Escherichia coli. The soluble, N-terminally truncated DsbE was overexpressed and purified to homogeneity. Here we report the structural and redox properties of the leaderless form (DsbEL-). During the redox reaction, the protein undergoes a structural transformation resulting in a more stable reduced form, but this form shows very low reactivity in thiol/ disulfide exchange of cysteine residues and low activity in accelerating the reduction of insulin. The standard redox potential (E'0) for the active thiol/ disulfide was determined to be -0.186 V; only one of the two cysteines (Cys80) was suggested to be the active residue in the redox reaction. From the aspect of biochemical properties, DsbE can be regarded as a weak reductant in the Escherichia coli periplasm. This implies that the function of DsbE in cytochrome c maturation can be ascribed to its active-site cysteines and the structure of the reduced form.  相似文献   

13.
Background:  Helicobacter pylori infection is an important health problem, as it involves approximately 50% of the world's population, causes chronic inflammatory disease and increases the risk of gastric cancer development. H. pylori infection elicits a vigorous immune response, but this does not usually result in bacterial clearance. We have investigated whether the persistence of H. pylori in the host could be partly due to an inability of macrophages to kill this bacterium.
Materials and Methods:  Monocytes and macrophages isolated from the peripheral blood of normal human controls were infected in vitro with five H. pylori isolates. The isolates were characterized for known H. pylori virulence factors; vacuolating cytotoxin (VacA), the cag pathogenicity island ( cag PAI), urease, and catalase by Western blot and polymerase chain reaction analysis. The ability of primary human monocytes and macrophages to kill each of these H. pylori strains was then defined at various time points after cellular infection.
Results:  The five H. pylori strains showed contrasting patterns of the virulence factors. There were different rates of killing for the bacterial strains. Macrophages had less capacity than monocytes to kill three H. pylori strains. There appeared to be no correlation between the virulence factors studied and differential killing in monocytes.
Conclusions:  Primary human monocytes had a higher capacity to kill certain strains of H. pylori when compared to macrophages. The VacA, cag PAI, urease, and catalase virulence factors were not predictive of the capacity to avoid monocyte and macrophage killing, suggesting that other factors may be important in H. pylori intracellular pathogenicity.  相似文献   

14.
We recently identified a gamma-interferon-inducible lysosomal thiol reductase (GILT), constitutively expressed in antigen-presenting cells, that catalyzes disulfide bond reduction both in vitro and in vivo and is optimally active at acidic pH. GILT is synthesized as a 35-kDa precursor, and following delivery to major histocompatibility complex (MHC) class II-containing compartments (MIICs), is processed to the mature 30-kDa form via cleavage of N- and C-terminal propeptides. The generation of MHC class II epitopes requires both protein denaturation and reduction of intra- and inter-chain disulfide bonds prior to proteolysis. GILT may be important in disulfide bond reduction of proteins delivered to MIICs and consequently in antigen processing. In this report we show that, like its mature form, precursor GILT reduces disulfide bonds with an acidic pH optimum, suggesting that it may also be involved in disulfide bond reduction in the endocytic pathway. We also show that processing of precursor GILT can be mediated by multiple lysosomal proteases and provide evidence that the mechanism of action of GILT resembles that of other thiol oxidoreductases.  相似文献   

15.
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.  相似文献   

16.
BACKGROUND: Helicobacter pylori extrudes protein- and lipopolysaccharide-enriched outer membrane vesicles from its cell surface which have been postulated to act to deliver virulence factors to the host. Lewis antigen expression by lipopolysaccharide of H. pylori cells has been implicated in a number of pathogenic roles. The aim of this study was to further characterize the expression of lipopolysaccharide on the surface of these outer membrane vesicles and, in particular, expression of Lewis antigens and their association with antibody production in the host. MATERIALS AND METHODS: H. pylori strains were examined for outer membrane vesicle production using transmission electron microscopy and Lewis antigen expression probed using immunoelectron microscopy. Sera from patients were analyzed for cross-reacting anti-Lewis antibodies and, subsequently, absorbed using outer membrane vesicle preparations to remove the cross-reacting antibodies. RESULTS: The formation of outer membrane vesicles by H. pylori was observed in both in vitro and in vivo samples. Furthermore, vesicles were produced following culture in either liquid or solid medium by all strains examined. Moreover, we observed the presence of Lewis epitopes on outer membrane vesicles using immunoelectron microscopy and immunoblotting. Circulating anti-Lewis antibodies were found in the sera of gastric cancer patients but not in the sera of H. pylori-negative control subjects. Absorption of patient sera with outer membrane vesicles decreased the levels of anti-Lewis autoantibodies. CONCLUSIONS: Our results demonstrate the ability of H. pylori to generate outer membrane vesicles bearing serologically recognizable Lewis antigens on lipopolysaccharide molecules which may contribute to the chronic immune stimulation of the host. The ability of these vesicles to absorb anti-Lewis autoantibodies indicates that they may, in part, play a role in putative autoimmune aspects of H. pylori pathogenesis.  相似文献   

17.
Infiltration of neutrophils and monocytes into the gastric mucosa is a hallmark of chronic gastritis caused by Helicobacter pylori. Certain H. pylori strains nonopsonized stimulate neutrophils to production of reactive oxygen species causing oxidative damage of the gastric epithelium. Here, the contribution of some H. pylori virulence factors, the blood group antigen-binding adhesin BabA, the sialic acid-binding adhesin SabA, the neutrophil-activating protein HP-NAP, and the vacuolating cytotoxin VacA, to the activation of human neutrophils in terms of adherence, phagocytosis, and oxidative burst was investigated. Neutrophils were challenged with wild type bacteria and isogenic mutants lacking BabA, SabA, HP-NAP, or VacA. Mutant and wild type strains lacking SabA had no neutrophil-activating capacity, demonstrating that binding of H. pylori to sialylated neutrophil receptors plays a pivotal initial role in the adherence and phagocytosis of the bacteria and the induction of the oxidative burst. The link between receptor binding and oxidative burst involves a G-protein-linked signaling pathway and downstream activation of phosphatidylinositol 3-kinase as shown by experiments using signal transduction inhibitors. Collectively our data suggest that the sialic acid-binding SabA adhesin is a prerequisite for the nonopsonic activation of human neutrophils and, thus, is a virulence factor important for the pathogenesis of H. pylori infection.  相似文献   

18.
19.
Analysis of iceA1 transcription in Helicobacter pylori   总被引:7,自引:0,他引:7  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号