首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we showed that essentially all the proteins of the Amoeba proteus nucleus could be classified either as Rapidly Migrating Proteins (RMP), which shuttle between nucleus and cytoplasm continuously at a relatively rapid rate during interphase, or as Slow Turnover Proteins (STP), which seem to move hardly at all during interphase. In this paper, we report on the kinetics and direction of the movement of both classes of protein, as well as on aspects of their localization, with and without growth. The effects of growth were observed with and without cell division. These nuclear proteins have been studied in several ways: by transplantation of labeled nuclei into unlabeled cells and noting the rate of distribution to cytoplasm and host cell nuclei; by repeated amputation of cytoplasm from labeled cells—with and without initially labeled cytoplasm—each amputation being followed by refeeding on unlabeled food; by noting the redistribution of the various protein classes following growth and cell division. The data show (a) labeled RMP equilibrate between a grafted labeled nucleus and an unlabeled host nucleus in ca. 3 hr, but are detectable in the latter less than 30 min after the operation; (b) STP label does, indeed, leave the nucleus and does so at a rate of ca. 25% of the nuclear total per cell generation (ca. 36–40 hr at 23°C); (c) the cytoplasm appears to have a reserve of material that is converted to RMP; (d) when labeled cells are amputated just before they would have divided and are refed unlabeled food after each amputation, there is a loss of 20–25% of the nuclear protein label with each amputation; (e) under the latter circumstances, an essentially complete turnover of all nuclear protein can be demonstrated.  相似文献   

2.
An excellent correlation has been established between the quantity of protein associated with nuclei isolated from heat-shocked cells and the level of hyperthermic cell killing. However, controversy remains about whether increases in nuclear-associated protein result from a heat-induced migration of cytoplasmic proteins into the nucleus or because hyperthermia reduces the solubility of nuclear proteins in the detergent buffers commonly used to isolate nuclei. To address this controversy, the nuclear protein content was measured in whole and detergent-extracted cells before and following hyperthermia. It was found that hyperthermia caused no significant change in the nuclear protein content of whole, unextracted cells, and when fluorescently labeled proteins were microinjected into the cytoplasm no gross change in the selective permeability of the nuclear membrane to soluble proteins was observed during or following hyperthermia. Measurements in extracted cells showed that the detergent buffers removed protein from both the nucleus and cytoplasm of control, nonheated cells and that hyperthermia reduced the extractability of both nuclear and cytoplasmic proteins. The amount of protein found in nuclei isolated from heated cells approached that observed in nuclei within nonheated whole cells as the hyperthermic exposure was increased. Thus, the dose-dependent, two- to threefold increase in the protein content of nuclei isolated from heated cells represents a heat-induced reduction in the extractability of proteins normally present within cell nuclei and does not result from a mass migration of cytoplasmic proteins into the nucleus, although some specific proteins (e.g., the 70 KDa heat shock protein) do migrate to the nucleus following heat shock. Differential scanning calorimetry (DSC) measurements of whole cells, isolated nuclei, cytoplasts, and karyoplasts supported these conclusions and suggested that most of the detergent-insoluble proteins remaining in the nuclei and cytoplasm of heated cells are in their native state. Thus, a relatively small amount of denatured protein may be sufficient to initiate and sustain insoluble protein aggregates comprised of mostly native proteins. Analyses of the DSC data also implied that the previously identified critical target proteins, predicted to have a Tm of 46.0°C, are present in both the nucleus and cytoplasm. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Autoradiographs of whole Amoeba proteus host cells fixed after the implantation of single nuclei from A. proteus donors labeled with any one of 8 different radioactive amino acids showed that the label had become highly concentrated in the host cell nucleus as well as in the donor nucleus and that the cytoplasmic activity was relatively low. When these amebae were sectioned, the radioactivity was found to be homogeneously distributed throughout the nuclei. The effect of unlabeled amino acid "chaser," the solubility of the labeled material, and the long-term behavior of the labeled material gave evidence that the radioactivity was in protein. At equilibrium, the host cell nucleus contained approximately 30 per cent of the radioactivity distributed between the two nuclei. This unequal nuclear distribution is attributed to the presence of two classes of nuclear proteins: a non-migratory one that does not leave the nucleus during interphase, and a migratory one, called cytonucleoprotein, that shuttles between nucleus and cytoplasm in a non-random manner. It is estimated that between 12 per cent and 44 per cent of the cytonucleoproteins are present in the cytoplasm of a binucleate cell at any one moment. Nuclei of Chaos chaos host cells also concentrated label acquired from implanted radioactive A. proteus nuclei.  相似文献   

4.
Fluorescent latex microspheres (FLMs) were used to label myoblasts and to permit the observation of hybrid myotubes before culture fixation. This type of labeling did not affect survival, development, or fusion of these cells. The FLMs were retained for several weeks. Labeled mouse myoblasts were co-cultured with unlabeled rat myoblasts to verify whether the marker was released and spread from labeled to unlabeled cells. The nuclear stain Hoechst 33258 was used to distinguish the myoblasts from both species and permitted the demonstration that there was virtually no re-uptake. Hybrid myotubes were also obtained by co-culturing mouse myoblasts containing rhodamine FLMs and rat myoblasts containing green FLMs. These mixed cultures were observed repeatedly with a fluorescent microscope without any cytotoxic effect. Several myotubes were observed before fixation of the cultures to contain both types of fluorescent labels. Subsequent fixation and staining with Hoechst dye confirmed that these myotubes were hybrids.  相似文献   

5.
Pulse labeling of deoxyribonucleic acid (DNA) and radioautography have been used to study the effect of growth rate on nuclear replication in Aspergillus nidulans. When conidia were germinated in media supporting a fast growth rate, the radioactive pulse labeled either all of the nuclei in a cell or none of them. At slower growth rates, hyphae contained both labeled and unlabeled nuclei. Altering the growth rate thus changed nuclear replication from simultaneous to sequential. The time taken to duplicate the DNA in a nucleus, estimated from the ratio of labeled to total nuclei, remained constant at the different doubling times. The distribution of label showed that nuclei in the same hypha spent unequal times in both the postmitotic gap (G1) and the premitotic gap (G2) periods when grown at slow rates. These unequal G1 and G2 periods are considered to cause asynchrony. Once DNA synthesis was out of phase through growth on a poor medium, transferring the hypha to a rich medium did not resynchronize the nuclei. To interpret the data, two initiator mechanisms, one starting DNA synthesis and the other mitosis, are postulated to control nuclear replication in A. nidulans.  相似文献   

6.
Rat myoblast nuclei were labeled with various concentrations of bromodeoxyuridine (BrdU), an analogue of thymidine, for 24 or 48 hr. Almost every myoblast was labeled with BrdU at concentrations between 10(-7) M and 10(-5) M. When the cells were labeled with 0.5 microM or more, the percentage of labeled cells remained over 90% and 80% at 2 and 5 days, respectively. However, when the cells were labeled with BrdU concentration lower than 10(-7) M the percentage of labeled nuclei decreased more rapidly with time. The BrdU-labeled cells were mixed with an unlabeled population to determine whether their capacity to fuse was reduced. At a BrdU concentration of 0.5 x 10(-6) M, labeled myoblasts fused to a similar extent as unlabeled myoblasts, and a high percentage of marked cells were still perceptively labeled after 5 days. In contrast, the fusion capacity of myoblasts incubated with more than 10(-6) M BrdU was inhibited after only few rounds of DNA synthesis. These myoblasts were eventually able to fuse, however, when the BrdU diminished in the DNA due to cell division. These results indicate that labeling with BrdU at a concentration of 0.5 x 10(-6) M and an incorporation time of 48 hr is optimal to obtain perceptible immunocytochemical staining without affecting myoblast fusion. Such BrdU immunolabeling could be used as a nuclear marker for hybridization studies.  相似文献   

7.
The nuclear matrix continues DNA synthesis at in vivo replicational forks   总被引:1,自引:0,他引:1  
Alkaline cesium chloride gradient analysis of in vivo [3H]bromodeoxyuridine-labeled and in vitro [alpha-32P]dCTP-labeled DNA was used to determine whether in vitro DNA synthesis in regenerating rat liver nuclei and nuclear matrices continued from sites of replication initiated in vivo. At least 70 and 50% of the products of total nuclear and matrix-bound in vitro DNA synthesis, respectively, were continuations of in vivo initiated replicational forks. The relationship of the in vitro DNA synthetic sites in total nuclei versus the nuclear matrix was examined by using [3H]bromodeoxyuridine triphosphate to density label in vitro synthesized DNA in isolated nuclei and [alpha-32P]dCTP to label DNA synthesized in isolated nuclear matrix. A minimum of about 40% of matrix-bound DNA synthesis continued from sites being used in vitro by isolated nuclei. Furthermore, nuclear matrices prepared from in vitro labeled nuclei were 5-fold enriched in DNA synthesized by the nuclei and were several-fold enriched, compared to total nuclear DNA, in a particularly high density labeled population of DNA molecules.  相似文献   

8.
Summary The uptake and retention of radiolabeled estradiol by the uterus was examined in the armadillo. One pregnant and two non-pregnant armadillos were treated with 1.4 g/kg body weight of 3H-estradiol (E2) by injection into the left ventricle, and one non-pregnant animal was injected with both the labeled hormone and 140 g/kg body weight of unlabeled E2. One and a half hour after injection, the animals were sacrificed and the uteri were removed and processed for autoradiography. In the non-pregnant animals, nuclear localization was observed in the interstitial cells and glandular epithelium of the endometrium and the connective tissue cells and smooth muscle of the myometrium. Additionally, there was a gradation of uptake in the epithelial cells of the endometrium in that the glandular cells of the basal region were heavily labeled, while those cells in the sinusoidal, and luminal regions contained successively less label. The luminal cells were poorly labeled. In the pregnant female, the smooth muscle and glandular cells hypertrophied and their nuclei contained less label than was observed in the non-pregnant animals. The arteries of the myometrium were more easily distinguished in the pregnant animals and the nuclei of the endothelial cells and smooth muscle were more consistently labeled than those of the non-pregnant armadillos.  相似文献   

9.
When nuclei were isolated from Chinese hamster ovary cells after being heated, there was a large increase in the amount of 3H-tryptophan labeled nonhistone protein in the nucleus relative to the whole cell. After 15 min or 30 min of heating at 45.5°C, the nuclear nonhistone protein content increased by 1.6 or 1.8, respectively. In contrast, when the nuclear nonhistone protein content was determined in the intact cell by using autoradiography to quantify 3H-tryptophan labeled protein in the nucleus and cytoplasm in sections of fixed cells, the nuclear nonhistone protein content increased by only 1.14 or 1.28 for 15 or 30 min at 45.5°C, respectively. Therefore, heat does not induce a massive movement of cytoplasmic protein into the nucleus. © 1993 Wiley-Liss, Inc.  相似文献   

10.

Microalgae are fundamentally important organisms for global ecosystem functioning with high potential in biotechnology and its applications. The knowledge of their nuclear DNA content has become a prerequisite for many areas of microalgal research. Due to common presence of various pigments, secondary metabolites and complex cell walls, the nuclear DNA content estimation using flow cytometry (FCM) is, however, often laborious or even impossible with the currently used protocols. In this study the performance of six nuclei isolation protocols was compared on various problematic microalgae using FCM. The nuclei isolation methods involved osmotic bursting of cells, razor blade chopping of fresh biomass and two newly introduced protocols, razor blade chopping of desiccated biomass and bead beating. These techniques also involved the use of two different nuclei isolation solutions, Otto I + II solutions, and LB01 buffer. Performance of the particular protocols differed greatly, depending on the used nuclei isolation solution and microalgal group. The most successful method was a newly adopted chopping of desiccated biomass in LB01 buffer. This method seems more appropriate for nuclei isolation in filamentous microalgae; on the other hand, bead beating appears to be more suitable for nuclei isolation in solitarily living algae. Using the optimal protocol for a given species, their nuclear DNA content was estimated, resulting in first DNA content estimates for four investigated taxa (Chlamydomonas noctigama, Gonyostomum semen, Microglena sp. and Stigeoclonium sp.). The estimated DNA content spanned from 0.15 to 32.52 pg.

  相似文献   

11.
12.
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.  相似文献   

13.
Experiments were conducted to determine if nuclear proteins are preferentially synthesized in the vicinity of the nucleus, a factor which could facilitate nucleocytoplasmic exchange. Using Xenopus oocytes, animal and vegetal hemispheres were separated by bisecting the cells in paraffin oil. It was initially established that protein synthesis is not affected by the bisecting procedure. To determine if nuclear protein synthesis is restricted to the animal hemisphere (which contains the nucleus), vegetal halves and enucleated animal halves were injected with [3H]leucine and incubated in oil for 90 min. The labeled cell halves were then fused with unlabeled, nucleated animal hemispheres that had been previously injected with puromycin in amounts sufficient to prevent further protein synthesis. Thus, labeled polypeptides which subsequently entered the nuclei were synthesized before fusion. Three hours after fusion, the nuclei were isolated, run on two-dimensional gels, and fluorographed. Approximately 200 labeled nuclear polypeptides were compared, and only 2 were synthesized in significantly different amounts in the animal and vegetal hemispheres. The results indicate that nuclear protein synthesis is not restricted to the cytoplasm adjacent to the nucleus.  相似文献   

14.
Analyses of cell populations that have been labeled in vivo with analogs of thymidine that are incorporated by cells synthesizing DNA and then monitored over time by bivariate flow cytometry sometimes detect populations of cells that have S phase DNA content but that have not acquired label. Two alternative explanations for the lack of labeling are that either the cells were not exposed to the label or that the cells stopped DNA synthesis and ceased progression through S phase. To help determine which scenario is the more likely, a model has been devised for studying a population of cells that includes the possibility that cells in S phase will cease DNA synthesis. In this model, the initial fraction of unlabeled cells in S phase depends on two rates: the growth rate of the total population and the number of cells that cease progression through S phase per unit time. The model is used to analyze the changing quantities which can be measured by monitoring the population of cells over time and is used to estimate the two rates required to compute the initial fraction of unlabeled S phase cells. Thus, the initial fraction of unlabeled cells can be compared with that predicted by the population dynamics to determine whether one explanation for the failure of some cells to be labeled is preferable to the other, which in turn might offer information about tumor microvascular or cytologic properties.  相似文献   

15.
The proteins which become associated with nuclei during hyperthermic exposure were characterized by labeled amino acid incorporation. Actinomycin-D (Act-D) or cycloheximide (CHM) pretreatment was used to determine whether concurrent RNA or protein synthesis is required for hyperthermia to induce the increase in nuclear protein content. Prior to heat exposure exponentially growing HeLa cells were (i) pulse labeled for 1 h, (ii) labeled for 36 h, or (iii) labeled for 24 h followed by 17 h chase. The nuclear specific activity (CPM/microgram protein) of [3H]lysine-labeled proteins did not change under any of the labeling conditions, whereas that of [3H]leucine-containing proteins increased significantly with (i) but not with (ii) or (iii), while that of [3H]tryptophan-labeled protein increased significantly with (i) and (ii) but not with (iii). Act-D treatment 1 h prior to and during heating did not affect nuclear protein increase, while CHM-treated cells showed generally less nuclear protein content (70% of control at 60 min) but nevertheless significant nuclear protein increase upon heating (60% increase at 60 min from 0 min). These results suggest that those proteins associated with nuclei following heat exposure are nonhistones with a high turnover rate, and the process dose not require the synthesis of RNA or proteins.  相似文献   

16.
These experiments were designed to determine whether the migration of RNA molecules from an implanted nucleus to the host cytoplasm and from there into the host cell nucleus against a concentration gradient might reflect an artefact induced by the process of nuclear transplantation. That is, are RNA molecules, as previously shown for certain nuclear proteins, caused to artefactually leave a manipulated nucleus and then move into the host cell nucleus (as well as return to the grafted nucleus) during the recovery period?A variety of experiments involving different kinds of manipulative sequences and different numbers of nuclear transplantations suggest—but do not prove—that no artefact is involved in the migration of RNA from one nucleus to another but two experiments strongly support the view that the shuttling activity is a normal physiological process. One of the latter involved a determination of the rate of egress of 3H-RNA from an implanted nucleus and reveals that that rate, in contrast with the equivalent rate of egress for labeled proteins which is clearly abnormal after micromanipulation, is totally consonant with the rate of movement of RNA from nucleus to cytoplasm established from experiments that do not involve micromanipulation. The other experiment involves comparison of (1) the amount of radioactivity acquired by an unlabeled nucleus present in the cell at the time a labeled nucleus is implanted with (2) the amount of radioactivity acquired by an unlabeled nucleus implanted after a labeled nucleus had been implanted and had time to recover from any possible operation-induced trauma. With 3H-protein nuclei the host nuclei of (1) acquired much more label than the host nuclei of (2) because in (1) the host nuclei were able to acquire much of the artefactually-released 3H-protein. For the 3H-RNA experiments, however, little difference was found between (1) and (2) in the amount of label acquired by the host cell nuclei. It can be concluded that little, if any, of the non-random shuttling activity of RNA molecules can be a reflection of an artefact.  相似文献   

17.
STUDIES ON THE ORIGIN OF RIBOSOMES IN AMOEBA PROTEUS   总被引:1,自引:1,他引:0       下载免费PDF全文
The origin of cytoplasmic RNA and ribosomes was studied in Amoeba proteus by transplantation of a radioactive nucleus into an unlabeled cell followed by examination of the cytoplasm of the recipient for the presence of label. When a RNA-labeled nucleus was used, label appeared in the ribosomes, ribosomal RNA, and soluble RNA. Since the kinetics of appearance of labeled RNA indicates that the nucleus was not injured during the transfer, and since the transferred nuclear pool of labeled acid-soluble RNA precursors is inadequate to account for the amount of cytoplasmic RNA label, it is concluded that cytoplasmic ribosomal RNA is derived from acid-insoluble nuclear RNA and is probably transported as an intact molecule. Likewise, cytoplasmic soluble RNA probably originated in the nucleus, although labeling by terminal exchange in the cytoplasm is also possible. The results were completely different when a protein-labeled nucleus was grafted into an unlabeled host. In this case, label was found only in soluble proteins in the host cell cytoplasm, and there were no (or very few) radioactive ribosomes. This suggests that the nuclear pool of ribosomal protein and ribosomal protein precursors is relatively small and perhaps nonexistent (and, furthermore, shows that there was no cytoplasmic ribosomal contamination of the transferred nucleus).  相似文献   

18.
When human amnion cells were exposed to radioactive cytidine for 0.002 or 0.017 of one generation time, the alcohol-insoluble label in the RNA preparations from these cells was distributed between a rather homogeneous component of 4 to 8S and a fast mixture of 34S, 30S, 25S, 20S, and 15S. Evidence has been presented that these sedimenting components are RNA. More than 73 per cent of the label in the fast mixture from the cells labelled for 0.017 of one generation time was derived from the nuclei. The label in nucleotides after 0.017 of one generation time equaled 1.4 times that in RNA. Thus, the previous autoradiographic evidence for the nuclear origin of late cytoplasmic label is weak. The distribution of label among the various sedimenting components, as well as that between two pyrimidine nucleotide constitutents of 34S, 30S, 25S, and 15S components, changed when the length of exposure to radioactive cytidine was increased from 0.002 to 0.017 of one generation time. This result excluded the possibility that the population of the RNA labeled after 0.002 of one generation time was identical with that labeled later. This fact must be included in formulation of hypotheses for the function of rapidly labeled RNA's.  相似文献   

19.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

20.
Following division of HeLa-3T3 heterokaryons, human and mouse chromosomes occupy distinct regions within the resulting hybrid nuclei. This favorable orientation of genomes has allowed us to determine whether histones exchange between chromosomes in vivo. Acrylamide gel electrophoresis of the proteins from HeLa cells labeled with 3H-arginine during S phase showed that the core histones were labeled preferentially, constituting 30% of the total cellular tritium and 50% of the label in a crude nuclear fraction. Autoradiographic analysis of cells formed by fusion of 3H-arginine-labeled HeLa cells and 3T3-4E cells showed that 3H-arginine-labeled proteins did not migrate between nuclei in heterokaryons; hybrid cells formed from such heterokaryons contained nuclei in which 3H proteins occupied a sector within the nucleus; “sectored nuclei” could persist for at least 4 days; and the unequal distribution of 3H proteins did not change during DNA synthesis. Electron microscopic examination of hybrid nuclei failed to reveal a physical partition between human and mouse chromosome sets. Sectored nuclei were also observed in synkaryons derived from 3H-arginine-labeled HeLa and unlabeled HeLa cells, indicating that the unequal distribution of 3H-arginine-labeled proteins in HeLa-3T3 hybrid cells did not result from species-specific binding of proteins and DNA. The persistent unequal distribution of 3H-arginine-labeled proteins within hybrid nuclei in the apparent absence of a barrier between mouse and human chromosomes indicates that histones, the principal 3H-arginine-labeled proteins, do not dissociate from DNA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号