首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Plasminogen     
Plasminogen activator inhibitor-2 (PAI-2) specifically inhibits plasminogen activators, extracellular fibrinolytic serine proteases that are also implicated in brain plasticity and toxicity. Primarily localized intracellularly, PAI-2 is thought to also counteract apoptosis mediated by a currently undefined intracellular protease. Here we localized PAI-2 mRNA through in situ hybridization in brain cryosections derived from normal adult mice or after kainate excitation. We found that in the normal brain PAI-2 mRNA was confined to an area within the accumbens nucleus shell. After kainate was injected (i.p.), PAI-2 mRNA was substantially and rapidly (within 2 h) induced in neuron-like cells primarily in layers II-III of the neocortex; the cingulate, piriform, entorhinal and perirhinal cortices; the olfactory bulb, nucleus and tubercle; in the accumbens nucleus, shell and core; throughout the caudate putamen and the amygdaloid complex; in the CA1 and CA3 areas of the hippocampus, and in the parasubiculum. These findings suggest that PAI-2 could play a role in the accumbens nucleus as well as in activity-related events associated with olfactory, striatal, and limbic structures.  相似文献   

2.
Abstract: The cellular localization of transforming growth factor-α (TGFa) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGFα cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocam-pal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGFα cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGFα in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGFα in the development of several forebrain systems. Our results demonstrating the prominent and widespread expression of TGFα mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGFα is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.  相似文献   

3.
4.
The effects of short-term treatment (6 h) with selective D1 or D2 agonists and antagonists on the mRNA for proenkephalin in the medial and anterior aspects of the caudate-putamen and the nucleus accumbens were assessed by in situ hybridization histochemistry. Proenkephalin mRNA abundance was significantly changed in the striatum and accumbens in response to D2 receptor manipulation. D2 blockade with haloperidol or raclopride increased, whereas D2 stimulation with LY-171555 (D2 agonist) decreased, striatal and accumbens proenkephalin mRNA abundance. Antagonism of D1 receptor activity with SCH-23390 significantly decreased proenkephalin mRNA abundance in all brain regions. Concurrent administration of the D1 agonist SKF-38393 prevented the SCH-23390 effect in all brain areas. The data demonstrate that acute treatment with dopaminergic D2 agonists and antagonists affects proenkephalin mRNA abundance in the striatum and accumbens via a D2 receptor mechanism, consistent with the concept that D2 receptor function inhibits the synthesis of the mRNA encoding the enkephalin peptides. Moreover, D1 receptor activity, directly or indirectly, exerts modulatory effects on proenkephalin mRNA abundance in the striatum and nucleus accumbens.  相似文献   

5.
Stereotaxic injection of kainic acid (15 micrograms) into rat olfactory bulbs was accompanied by a 53% (n = 4; p less than 0.02) depletion of endogenous thyrotropin-releasing hormone (TRH) as compared to sham-operated controls 2 weeks postlesion. TRH levels remained unaltered in three other caudal regions. Bulbar kainate lesions produced a 58% (n = 5; p less than 0.001) decrease in TRH receptor binding capacity without affecting the receptor affinity. Kainate lesions also reduced bulbar muscarinic and benzodiazepine receptors by 60% and 48%, respectively. Again, no changes in TRH receptors were apparent in six other brain areas after bulbar kainate treatment. Injection of the dopaminergic neurotoxin, 6-hydroxydopamine (8 micrograms), into rat bulbs decreased TRH receptors by 35% (n = 4; p less than 0.05) 1 week postlesion. One month after surgical bulbectomy, TRH and TRH receptor levels in a number of brain areas were unaltered compared to those of control animals. These studies suggest that TRH in the olfactory bulb originates intrinsically and may be produced predominantly for local use. Secondly, TRH receptors in the bulb appear to be postsynaptically localized on intrinsic neurons, although a small proportion are also associated with presynaptic elements of dopaminergic noradrenergic neurons. Bulbar TRH receptors exhibited nanomolar affinity and a pharmacological selectivity akin to that of the pituitary gland and other brain regions.  相似文献   

6.
Lipocalin 2 (LCN2) is produced by mammalian hosts to bind bacterial siderophore and sequester free iron as part of an innate immune response, and could also play a role in tissue iron homeostasis, but thus far, little is known about its expression in the CNS. The present study was carried out to study the expression of the lipocalin in the normal rat brain and after neuronal injury induced by kainate (KA). Low levels of LCN2 mRNA and protein expression were detected in most regions of the normal brain except the olfactory bulb, brainstem and cerebellum. KA lesions resulted in damage to the hippocampus, leading to an early increase at three days and a sustained elevation in LCN2 mRNA level of 16-fold, and protein expression at 80-fold in the lesioned tissue compared to controls at 2 weeks post-KA injection. The sustained elevation in mRNA expression was not detected among other lipocalins surveyed using real-time RT-PCR - apoD, PGDS, Rbp4 and LCN5. Single and double immunostaining confirmed that LCN2 is present in astrocytes in the olfactory bulb, brainstem and cerebellum of the normal brain, and reactive astrocytes in the KA-lesioned hippocampus. In conclusion, the present study showed LCN2 to be present in select brain regions, and is upregulated in astrocytes after neuronal injury induced by kainate. We postulate that, as in the periphery, LCN2 may have a role in iron transport or trafficking in the CNS.  相似文献   

7.
Using the in situ hybridization, a distribution of corticotropin-releasing hormone (CRH) receptors CRH-1 and CRH-2 in the rat brain has been studied. Brain levels of CRH-1 mRNA were higher than the those of CRH-2 mRNA. Most intensive CRH-1 gene expression was observed in the forebrain, including neocortex, archicortex, paleocortex and cerebellar cortex. In addition, significant CRH-1 mRNA expression was detected in the red nucleus, pontine nucleus, cochlear nucleus and reticular tegmental nucleus. CRH-2 mRNA was intensively expressed in the olfactory structures, corticomedial amygdala, CA1-CA4 of hippocampus, ventramedial hypothalamus and several modullar nuclei. Moderate CRH-2 mRNA level were seen in the dorsomedial neostriatum. The findings indicate that within the brain two types of CRH receptors are widely expressed. A distinct pattern of CRH-1 and CRH-2 expression in the brain appears to underline the functional specifics of the CRH actions in brain structures.  相似文献   

8.
The distribution of a dopamine D2 receptor mRNA in rat brain   总被引:4,自引:0,他引:4  
D M Weiner  M R Brann 《FEBS letters》1989,253(1-2):207-213
Based on the recently reported sequence of a dopamine D2 receptor cloned from rat brain, we prepared a series of cDNA probes to determine the distribution of mRNA encoding this receptor. Within the forebrain, D2 receptor mRNA is abundant in the caudate-putamen, accumbens nucleus and olfactory tubercle. Moderate to low levels of mRNA are observed in the medial habenular nucleus, diagonal band, lateral septal nucleus, claustrum, dorsal endopiriform nucleus, and entorhinal cortex. In the mesencephalon, D2 receptor mRNA is abundant within the substantia nigra, pars compacta, and the ventral tegmental area. Comparison of the distribution of the mRNA and ligand binding indicates that both presynaptic and postsynaptic D2 receptors of the nigrostriatal, mesolimbic and mesocortical pathways are derived from the same mRNA.  相似文献   

9.
The dopamine (DA) pathway mediates numerous neuronal functions which are implicated in psychiatric disorders. Previously, our lab investigated the status of the dopamine transporter in the Wistar-Kyoto rat, a purported rodent model of depressive behavior, and reported significant alterations in transporter binding sites in several brain regions when compared to control rat strains. Given that DA-2 and DA-3 receptors belong to the same class of DA receptors, are co-localized in the mesolimbic and nigrostriatal regions of the brain and function as autoreceptors, this study mapped the distribution of central DA-2 and DA-3 receptors in Wistar-Kyoto and Wistar rats. The results indicated that while the binding of 125I-sulpride to DA-2 receptors was higher in the nucleus accumbens (shell) and ventral tegmental area, it was lower in the nucleus accumbens (core), caudate putamen and hypothalamus in Wistar-Kyoto compared to Wistar rats. In contrast, the binding of 125I-sulpride to DA-3 receptors was higher in the caudate putamen, nucleus accumbens (shell and core) and islands of Calleja in Wistar-Kyoto compared to Wistar rats. Given that DA-2 like receptors in the ventral tegmental area function as autoreceptors, it is possible that the greater inhibitory effects exerted by DA-2 and DA-3 receptors in Wistar-Kyoto rats may lead to a net deficit in DA levels in areas receiving projection from this cell body area.  相似文献   

10.
Prokineticin 2 (PK2) has been indicated as an output signaling molecule for the suprachiasmatic nucleus (SCN) circadian clock. Most of these studies were performed with nocturnal animals, particularly mice and rats. In the current study, the PK2 and its receptor, PKR2, was cloned from a species of diurnal macaque monkey. The macaque monkey PK2 and PKR2 were found to be highly homologous to that of other mammalian species. The mRNA expression of PK2 and PKR2 in the macaque brain was examined by in situ hybridization. The expression patterns of PK2 and PKR2 in the macaque brain were found to be quite similar to that of the mouse brain. Particularly, PK2 mRNA was shown to oscillate in the SCN of the macaque brain in the same phase and with similar amplitude with that of nocturnal mouse brain. PKR2 expression was also detected in known primary SCN targets, including the midline thalamic and hypothalamic nuclei. In addition, we detected the expression of PKR2 mRNA in the dorsal raphe nucleus (DR) of both macaque and mouse brains. As a likely SCN to dorsal raphe projection has previously been indicated, the expression of PKR2 in the raphe nuclei of both macaque and mouse brain signifies a possible role of DR as a previously unrecognized primary SCN projection target.  相似文献   

11.
12.
Heterogeneity of D2 dopamine receptors in different brain regions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen.  相似文献   

13.
The nucleus accumbens, situated at the junction between rostral pre-commissural caudate and putamen, is now considered to be critically involved in rewarding and motivational functions mediated by the neurotransmitter dopamine. However, in the human, the precise anatomical boundaries of this nucleus are still undetermined and controversy exists as to the extent to which nucleus accumbens activity is controlled by noradrenaline, a related neurotransmitter now much neglected (in favor of dopamine) by the scientific community. Here we resolve the question of noradrenaline in the human nucleus accumbens and identify, in autopsied brain of normal subjects, a small subdivision of the caudomedial portion of this nucleus that selectively contains strikingly high levels of noradrenaline and thus represents the only area in human brain having equally high levels of both noradrenaline and dopamine. The presence of very high, localized noradrenaline concentrations in the caudomedial nucleus accumbens implies a special biological role for this neurotransmitter in human brain motivational processes.  相似文献   

14.
H Chin  M A Smith  H L Kim  H Kim 《FEBS letters》1992,299(1):69-74
We have localized dihydropyridine (DHP-sensitive calcium channels in rat brain by in situ hybridization and immunohistochemistry. The mRNA for the dihydropyridine-sensitive calcium channel alpha 1 subunit (DHPR-B) is prominently localized in neuronal cells in the olfactory bulb, dentate gyrus, hippocampus, arcuate nucleus, paraventricular nucleus, ventromedial nucleus, cerebral cortex, superior colliculus and the cerebellar Purkinje cell layer. Strong expression of DHPR-B mRNA was also found in the pituitary and pineal glands. DHP-sensitive calcium channel alpha 1 subunit distribution has also been examined immunohistochemically with polyclonal antibodies raised against synthetic peptides specific for the DHPR-B alpha 1 subunit protein. The results from immunohistochemistry were in good agreement with those from in situ hybridization. Thus, regional distribution and localization of DHPR-B mRNA and alpha 1 subunit protein in rat brain suggest that this type of DHP-sensitive brain calcium channel may play an important role in excitation-secretion coupling functions in the neuroendocrine system.  相似文献   

15.
Ca2+/calmodulin-dependent protein kinase I (CaMKI), originally identified as a protein kinase phosphorylating synapsin I, has been shown to constitute a family of closely related isoforms (alpha, beta and gamma). Here, we have isolated and determined the complete primary structures of two alternatively splicing isoforms of CaMKI termed CaMKI gamma 1 and -gamma 2. CaMKI gamma 1 and -gamma 2 contain an identical N-terminal catalytic domain with different C-terminal regions due to the deletion of the 425-bp nucleotide sequence of CaMKI gamma 1 in CaMKI gamma 2. In vitro kinase assay has demonstrated the marked enhancement of the Ca2+/CaM-dependent activity of CaMKI gamma 1 by the preincubation with Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), but no significant activation of CaMKI gamma 2. Northern blot analysis has demonstrated the predominant expression of CaMKI gamma in the brain. RT-PCR analysis has revealed similar expression patterns between CaMKI gamma 1 and CaMKI gamma 2 in various brain regions. In situ hybridization analysis has demonstrated that CaMKI gamma mRNA is expressed in a distinct pattern from other isoforms of CaMKI with predominant expression in some restricted brain regions such as the olfactory bulb, hippocampal pyramidal cell layer of CA3, central amygdaloid nuclei, ventromedial hypothalamic nucleus and pineal gland. In the primary hippocampal neurons and NG108-15 cells, transfected CaMKI gamma 1 and -gamma 2 are localized primarily in the cytoplasm and neurites but not in the nucleus. These findings suggest that both isoforms of CaMKI gamma may be involved in Ca2+ signal transduction in the cytoplasmic compartment of certain neuronal population.  相似文献   

16.
Summary Neurons displaying FMRFamide(Phe-Met-Arg-Phe-NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.  相似文献   

17.
The olfactory bulb (OB) of rodents has been suggested to possess a self-sustaining circadian oscillator which functions independent from the master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, neither histology nor physiology of this extra-SCN clock is studied yet. In the present study, we examined circadian variation of major clock gene expressions in the OB and responsiveness to single photic stimuli. Here we show significant circadian variation in the expression of clock genes, Per1, Per2 and Bmal1 in the OB. Per1 and PER2 were mainly expressed in the mitral cell and granular cell layers of the OB. Light responsiveness of Per1 and Per2 expression was different in the OB from that in the parietal cortex. Both Per1 and Per2 are expressed in the OB only by l000 lux light pulse, whereas 100 lux light was enough to induce Per1 mRNA in the parietal cortex. Interestingly, even 1000 lux light failed to induce Per2 mRNA in the parietal cortex. These clock gene-specific and brain region-dependent responses to lights in the OB and parietal cortex suggest that single light stimulus induces various physiological functions in different brain areas via specific clock gene.  相似文献   

18.
In the brain, dopamine and adenosine stimulate cyclic AMP (cAMP) production through D1 and A2a receptors, respectively. Using mutant mice deficient in the olfactory isoform of the stimulatory GTP-binding protein alpha subunit, Galpha(olf), we demonstrate here the obligatory role of this protein in the adenylyl cyclase responses to dopamine and adenosine in the caudate putamen. Responses to dopamine were also dramatically decreased in the nucleus accumbens but remained unaffected in the prefrontal cortex. Moreover, in the caudate putamen of mice heterozygous for the mutation, the amounts of Galpha(olf) were half of the normal levels, and the efficacy of dopamine- and CGS 21680 A(2) agonist-stimulated cAMP production was decreased. Together, these results identify Galpha(olf) as a critical parameter in the responses to dopamine and adenosine in the basal ganglia.  相似文献   

19.
Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号