首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The dnaH mutant strain HF4704S, isolated by Sakai et al. (1974), was examined for its effect on phiX174 deoxyribonucleic acid (DNA) synthesis. It was found to carry two mutations affecting DNA synthesis. One mutation had no affect on phiX174 DNA synthesis, but did affect the ability of the mutant cells to form colonies on agar medium at 41 degrees C, and caused host DNA synthesis to cease after 1 h at 41 degrees C. The mutant marker cotransduced with ilvD at a frequency of about 9%. It seems likely that this mutation is in the dnaA gene. The second mutation affected the ability of the mutant cells to form colonies on agar medium supplemented with only 2 mug of thymine per ml, and affected both host and phiX174 DNA synthesis in medium supplemented with only 2 mug of thymine per ml. Both effects could be overcone by adding excess exogenous thymine. We were not able to unambiguously determine the map position of this mutant locus. Our data show that the DNA synthesis phenotype of the mutant strain HE4704S is governed by both these mutations, neither of which directly affects the replication of phiX174 DNA.  相似文献   

2.
Bacteriophage alpha3 is a member of the Microviridae, a family of small, single-stranded, icosahedral phages that include phiX174. These viruses have an ssDNA genome associated with approximately 12 copies of an H pilot protein and 60 copies of a small J DNA-binding protein. The surrounding capsid consists of 60 F coat proteins decorated with 12 pentameric spikes of G protein. Assembly proceeds via a 108S empty procapsid that requires the external D and internal B scaffolding proteins for its formation.The alpha3 "open" procapsid structural intermediate was determined to 15A resolution by cryo-electron microscopy (cryo-EM). Unlike the phiX174 "closed" procapsid and the infectious virion, the alpha3 open procapsid has 30A wide pores at the 3-fold vertices and 20A wide gaps between F pentamers as a result of the disordering of two helices in the F capsid protein. The large pores are probably used for DNA entry and internal scaffolding protein exit during DNA packaging. Portions of the B scaffolding protein are located at the 5-fold axes under the spike and in the hydrophobic pocket on the inner surface of the capsid. Protein B appears to have autoproteolytic activity that cleaves at an Arg-Phe motif and probably facilitates the removal of the protein through the 30A wide pores.The structure of the alpha3 mature virion was solved to 3.5A resolution by X-ray crystallography and was used to interpret the open procapsid cryo-EM structure. The main differences between the alpha3 and phiX174 virion structures are in the spike and the DNA-binding proteins. The alpha3 pentameric spikes have a rotation of 3.5 degrees compared to those of phiX174. The alpha3 DNA-binding protein, which is shorter by 13 amino acid residues at its amino end when compared to the phiX174 J protein, retains its carboxy-terminal-binding site on the internal surface of the capsid protein. The icosahedrally ordered structural component of the ssDNA appears to be substantially increased in alpha3 compared to phiX174, allowing the building of about 10% of the ribose-phosphate backbone.  相似文献   

3.
Protein n' of Escherichia coli is required for formation of the prepriming complex in replication of the single-stranded circle of phiX174 DNA. The protein, purified to near homogeneity, possesses ATPase (dATPase) activity in the presence of single-stranded, but not duplex, DNAs. Except for phiX174 DNA, ATPase activity is completely suppressed by coating the DNA with single strand binding protein (SSB). phiX174 DNA possesses a unique sequence with a potential hairpin structure that is recognized as an effector (Shlomai, J., and Kornberg, A. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 799-803). Sequences with secondary structure in SSB-coated M13 DNA which are recognized by RNA polymerase, and in coated G4 DNA by primase, are inert for protein n'. Approximately 30 of the 180 molecules of SSB bound to phiX DNA are destabilized by protein n' in an ATP-dependent reaction. These actions by protein n' may be important in recognizing an origin for forming the prepriming complex that leads to initiation of phiX complementary strand synthesis.  相似文献   

4.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

5.
Seven mutants of Haemophilus influenzae were isolated by the criterion of sensitivity to ultraviolet (UV) inactivation of colony formation. These mutants and the wild type were characterized with regard to X-ray inactivation of colony formation, UV induction of division inhibition, the ability of the eight strains to act as recipients to UV-irradiated H. influenzae phage and transforming deoxyribonucleic acid (DNA), and the influence of acriflavine on the survival of UV-irradiated transforming DNA with these strains as recipients. The photoreactivable sector of transforming DNA with yeast photoreactivating enzyme was measured for the most UV-sensitive mutant and was found to be greater than that of wild type. Judged by the above criteria, the order of the strains' sensitivities shows some, but by no means complete, correlation from one type of sensitivity characterization to another, indicating that a minimum of two variables is needed to explain the differences in the strains. Acriflavine increases the UV sensitivity of transforming DNA except in the most sensitive mutant. This effect is usually, but not always, more pronounced in the case of the more UV-resistant marker. The acriflavine effect is postulated to be the result of at least two factors: (i) interference with repair of transforming DNA in the host cell, and (ii) interference with the probability of recombination between transforming DNA and host DNA.  相似文献   

6.
The Escherichia coli dnaC protein is not absolutely required in vivo for bacteriophage phiX174 parental replicative-form synthesis (Kranias and Dumas, 1974). However, when rifampin is present at a concentration that inhibits DNA-dependent RNA polymerase, phiX174 parental replicative-form synthesis is dependent on the dnaC protein activity. We conclude that E. coli DNA-dependent RNA polymerase can substitute for the dnaC protein in phiX174 parental replicative-form DNA synthesis, presumably in its initiation. The implications of this result with respect to the in vitro synthesis of the complementary strand of phiX174 DNA are discussed.  相似文献   

7.
The deoxyribonucleic acid (DNA) of resistance (R) factor 222 carried by Escherichia coli strain P678-54 was found in the normally chromosomeless progeny (minicells) of that strain. The entry of the R222 DNA into minicells appears to be via segregation at the time of their formation from normal cells. The R222 DNA can replicate in minicells although the extent of its replication appears to be limited. An analysis of the R222 DNA structure indicates that it exists in minicells as double-stranded linear, open circular, and twisted circular monomers (molecular weight, about 6.2 x 10(7) daltons). The monomers visualized by electron microscopy are 31.0 +/- 0.5 mum in length. An examination of the effect of acridine orange on the replication of R222 and colicin E1 DNA indicates the dye intereferes with plasmid DNA replication.  相似文献   

8.
Masai H  Deneke J  Furui Y  Tanaka T  Arai KI 《Biochimie》1999,81(8-9):847-857
The E. coli PriA protein, a DEXH-type DNA helicase with unique zinc finger-like motifs interrupting the helicase domains, is an essential component of the phiX174-type primosome and plays critical roles in RecA-dependent inducible and constitutive stable DNA replication (iSDR and cSDR, respectively) as well as in recombination-dependent repair of double-stranded DNA breaks. B. subtilis PriA (BsPriA) protein contains the conserved helicase domains as well as zinc finger-like motifs with 34% overall identity with the E. coli counterpart. We overexpressed and purified BsPriA and examined its biochemical properties. BsPriA binds specifically to both n'-pas (primosome assembly site) and D-loop and hydrolyzes ATP in the presence of n'-pas albeit with a specific activity about 30% of that of E. coli PriA. However, it is not capable of supporting n'-pas-dependent replication in vitro, nor is it able to support ColE1-type plasmid replication in vivo which requires the function of the phiX174-type primosome. We also show that a zinc finger mutant is not able to support recombination-dependent DNA replication, as measured by the level of iSDR after a period of thymine starvation, nor wild-type level of growth, cell morphology and UV resistance. Unexpectedly, we discovered that an ATPase-deficient mutant (K230D) is not able to support iSDR to a full extent, although it can restore normal growth rate and UV resistance as well as non-filamentous morphology in priA1::kan mutant. K230D was previously reported to be fully functional in assembly of the phiX174-type primosome at a single-stranded n'-pas. Our results indicate that ATP hydrolysis/ helicase activity of PriA may be specifically required for DNA replication from recombination intermediates in vivo.  相似文献   

9.
Bacteriophage phiX174 DNA was labeled in vivo with [methyl-(3)H]methionine. The methyl-labeled progeny DNA was extracted from purified bacteriophage phiX174 particles and was used as template for in vitro synthesis of the complementary strand in the presence of the nucleoside triphosphates and Escherichia coli polymerase I. The resultant replicative form DNA was then cleaved, in separate experiments, with restriction endonucleases from Haemophilus influenzae and H. aegyptius. The DNA fragments were analyzed by polyacrylamide gel electrophoresis. It is concluded that the single methylcytosine in the viral DNA is located in a specific region of the phiX174 genome, very likely in gene H.  相似文献   

10.
A restriction-like enzyme has been purified from Haemophilus aegyptius. This nuclease, endonuclease Z, produces a rapid decrease in the viscosity of native calf thymus and H. influenzae deoxyribonucleic acids (DNA), but does not degrade homologous DNA. The specificity of endonuclease Z is different from that of the similar endonuclease isolated from H. influenzae (endonuclease R). The purified enzyme cleaves the double-stranded replicative form DNA of bacteriophage phiX174 (phiX174 RF DNA) into at least 11 specific limit fragments whose molecular sizes have been estimated by gel electrophoresis. The position of these fragments with respect to the genetic map of phiX174 can be determined by using the genetic assay for small fragments of phiX174 DNA.  相似文献   

11.
The restriction enzyme from Hemophilus influenzae, endonuclease R, cleaves phiX174 replicative-form deoxyribonucleic acid (DNA) into at least 13 specific limit fragments. The molecular weights of 12 of the fragments have been estimated by gel electrophoresis and electron microscopy. Using the genetic assay for small fragments of phiX DNA, we have shown that we can salvage markers from the endonuclease R phiX-RF fragments.  相似文献   

12.
A functional dnaZ product, known to be essential for host DNA polymerization and for the synthesis of M13 and phiX174 parental replicative-form (RF) DNA, is required also for RF replication and single-strand synthesis by both of these phages. All three stages of M13 and phiX174DNA replication (parental RF formation, RF replication, and single-strand synthesis) are inhibited in dnazts mutants at elevated temperatures. In addition, the thermolabile step in M13 parental RF formation appears to occur after RNA priming;i.e., the synthesis of M13 RF DNA proceeded when a dnaZts mutant, infected at a nonpermissive temperature, was transferred to a permissive temperature in the presence of rifampin.  相似文献   

13.
Reactivation of single-stranded DNA phage, photodynamically inactivated in the presence of proflavine sulfate, by three isogenic Escherichia coli strains having different DNA repair capabilities has been studied. It was found that reactivation of photoinactivated phiX174 was possible only if the host cells were recombination proficient (recA(+)) and had been lightly irradiated with UV light prior to infection; the presence of the uvrA(+) gene was not essential. Only a small part of the proflavine-mediated photodynamic damage in phiX174 could be repaired in this fashion. Burst sizes of reactivated phages were, however, comparable to those of normal unirradiated phages.  相似文献   

14.
Packaging of viral genomes into their respective capsids requires partial neutralization of the highly negatively charged RNA or DNA. Many viruses, including the Microviridae bacteriophages phiX174, G4, and alpha3, have solved this problem by coding for a highly positively charged nucleic acid-binding protein that is packaged along with the genome. The phiX174 DNA-binding protein, J, is 13 amino acid residues longer than the alpha3 and G4 J proteins by virtue of an additional nucleic acid-binding domain at the amino terminus. Chimeric phiX174 particles containing the smaller DNA-binding protein cannot be generated due to procapsid instability during DNA packaging. However, chimeric alpha3 and G4 phages, containing the phiX174 DNA-binding protein in place of the endogenous J protein, assemble and are infectious, but are less dense than the respective wild-type species. In addition, host cell attachment and native gel migration assays indicate surface variations of these viruses that are controlled by the nature of the J protein. The structure of alpha3 packaged with phiX174 J protein was determined to 3.5A resolution and compared with the previously determined structures of phiX174 and alpha3. The structures of the capsid and spike proteins in the chimeric particle remain unchanged within experimental error when compared to the wild-type alpha3 virion proteins. The amino-terminal region of the phiX174 J protein, which is missing from wild-type alpha3 virions, is mostly disordered in the alpha3 chimera. The differences observed between solution properties of wild-type phiX174, wild-type alpha3, and alpha3 chimera, including their ability to attach to host cells, correlates with the degree of order in the amino-terminal domain of the J protein. When ordered, this domain binds to the interior of the viral capsid and, thus, might control the flexibility of the capsid. In addition, the properties of the phiX174 J protein in the chimera and the results of mutational analyses suggest that an evolutionary correlation may exist between the size of the J protein and the stoichiometry of the DNA pilot protein H, required in the initial stages of infection. Hence, the function of the J protein is to facilitate DNA packaging, as well as to mediate surface properties such as cell attachment and infection.  相似文献   

15.
Fast-sedimenting forms of bacteriophage phiX174 double-stranded replicative-form DNA observed in normal infections continued to accumulate at the nonpermissive temperature in a temperature-sensitive dnaC mutant of Escherichia coli. These complex molecules accounted for up to half of the DNA synthesized during short pulses at the nonpermissive temperature. They were the dead-end products of DNA synthesis, not intermediates in normal replicative-form replication. The data suggest that these higher-than-normal-molecular-weight DNA molecules result from abnormal initiation of phiX174 replicative-form DNA replication.  相似文献   

16.
phiX RF DNA was cleaved by restriction enzymes from Haemophilus influenzae Rf (Hinf I) and Haemophilus haemolyticus (Hha. I). Twenty one fragments of approximately 25 to 730 base pairs were produced by Hinf I and seventeen fragments of approximately 40 to 1560 base pairs by Hha I. The order of these fragments has been established by digestion on Haemophilus awgyptius (Hae III) and Arthrobacter luteus (Alu I) endonuclease fragments of phiX RF with Hinf I and Hha1. By this method of reciprocal digestion a detailed cleavage map of phiX RF DNA was constructed, which includes also the previously determined Hind II, Hae III and Alu I cleavage maps of phiX 174 RF DNA (1, 2). Moreover, 28 conditional lethal mutants of bacteriophage phiX174 were placed in this map using the genetic fragment assay (3).  相似文献   

17.
The addition of 25 mug of protamine sulfate per ml to lysozyme-ethylenediamine-tetraacetic acid spheroplasts of Escherichia coli stimulates transfection not only for T1 phage deoxyribonucleic acid (DNA; Hotz and Mauser, 1969) but also for the following phage DNA species: lambda, 10,000-fold to an efficiency of 10(-3) infective centers per DNA molecule; phiX174 replicative form, 300-fold to an efficiency of 5 x 10(-2); fd replicative form, 300-fold to 10(-6); T7, 300-fold to 3 x 10(-7). Three native phage DNA species were not infective at all in the absence of protamine sulfate but were infective in the presence of protamine sulfate with the following efficiencies: T4, 10(-5); T5, 3 x 10(-6); and P22, 3 x 10(-9). The effect of protamine sulfate is specific for double-stranded DNA. The application of infectivity assays to the study of phage DNA replication, recombination, prophage integration, prophage excision, and interspecies transfection are discussed.  相似文献   

18.
The large pyrimidine oligonucleotides from the DNAs of the two related bacteriophages phiX174 and S13 have been sequenced. The largest pyrimidine oligonucleotide present is unique to S13 DNA and is the undecanucleotide C5T6, sequence C-T-T-C-C-T-C-T-T-C-T. Considerable sequence homology has been found between the pyrimidine oligonucleotides of the two phage DNAs. Out of 14 oligonucleotide sequences from S13 DNA (120 bases) at least ten are identical with sequences of oligonucleotides from phiX174 DNA (92 bases) and two are closely related (17 bases), the only difference being a single thymine to cytosine transition in each sequence (a total of 107 identical bases). The pyrimidine oligonucleotides of each phage DNA show extensive internal sequence homology among each other with up to eight bases identical in sequence in pairs of different oligonucleotides. Another interesting observation is the occurrence of symmetrical sequences (true palindromes) which read the same forwards as backwards. The longest symmetrical sequence is the nonanucleotide C4T5 sequence, C-T-C-T-T-T-C-T-C, present in both S13 and phiX174 DNAs. The extensive sequence homology observed between the pyrimidine oligonucleotides of S13 and phiX174 supports the close relationship of the two phages and provides further evidence that they were derived from recent common ancestors.  相似文献   

19.
Several related mutants of Escherichia coli C have been isolated that block the growth of the small icosahedral DNA phages phiX174 and S13 late in infection. Phage G6 is also blocked, at a stage not yet known. Growth of the filamentous phage M13, though not blocked, is affected in these strains. These host mutations co-transduce with ilv at high frequency, as do rep- mutations. However, the new mutants, designated groL-, differ from previously studied rep- mutants in that they permit synthesis of progeny replicative-form DNA. The groL- mutants are blocked in synthesis of stable single-stranded DNA of phiX174 and related phages. They are gro+ for P2. Evidence that groL- mutations and rep- mutations are in the same gene is presented. Spontaneous mutants (ogr) of phiX174, S13, and the G phages can grow on groL- strains. The ogr mutations are located in the phage's major capsid gene, F, as determined by complementation tests. There are numerous sites for mutation to ogr. Some mutations in genes A and F interfere with the ogr property when combined with an ogr mutation on the same genome. The ogr mutations are cis acting in a groL- cell; i.e., an ogr mutant gives very poor rescue of a non-ogr mutant. The wild-type form of each G phage appears to be naturally in the ogr mutant state for one or more groL- strains. It is suggested that a complex between F and rep proteins is involved in phage maturation. The A protein appears to interact with this complex.  相似文献   

20.
Nature of φX174 Linear DNA from a DNA Ligase-Defective Host   总被引:1,自引:0,他引:1       下载免费PDF全文
Linear DNAs have been prepared from phiX phage and from phiX RF II (double-stranded circular form of phiX DNA, formed during infection and nicked in one or both strands) molecules derived from infection at the restrictive temperature of Escherichia coli ts7, a host mutant with a temperature-sensitive DNA ligase activity. The linear DNA from these phages can be circularized by annealing with fragments of phiX RF DNA produced by the Haemophilus influenzae restriction nuclease. The circularization experiment indicated that the site of breakage of the linear phage DNAs is not unique nor confined to a particular region of the genome. These linear DNAs were less than 0.1% as infective as circular phage DNA. The linear, positive strand of late RF II DNA, however, is uniquely nicked in the region of the phiX genome corresponding to cistron A. Although a low level of infectivity is associated with the linear DNA derived from late RF II, this infectivity appears to be a result of the association of linear positive and linear negative strands during the infectivity assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号