首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
l-Serine production from methanol and glycine was attempted using immobilized resting cells of a methylotroph, Protomonas extorquens NR 1, under automatically controlled conditions. A Ca-alginate system was selected. The conditions for l-serine formation were optimized at 30°C. A concentration of glycine 100 g·l−1 which was the optimum concentration for l-serine production by free resting cells was used in the reaction mixture. The optimum concentrations of methanol and dissolved oxygen were 20 g·l−1 and 5 ppm, respectively. Under the optimum conditions, 11.3 g·l−1 of l-serine was produced within 36 h. The selectivities (mole of l-serine/mole of substrate consumed) of l-serine from methanol and glycine were 4.5% and 95.1%, respectively. The size of gel beads affected the l-serine formation rate. The initial rate of l-serine formation decreased with an increase in the size of beads. However, the l-serine formation rate increased at elevated concentrations of dissolved oxygen, even with large sized beads. This result implies that the oxygen diffusion inside the gel beads limited the l-serine formation rate. The observed effectiveness factor of the immobilized cells could be estimated by the theoretical effectiveness factor of the zero-order reaction with respect to the dissolved oxygen.Repeated use was not feasible without reactivation of the immobilized cells. Reusability was examined by reactivation of the immobilized resting cells in appropriate media for 12 h. The reactivated immobilized resting cells were used again in the next cycle. By this procedure, several cycles of l-serine formation were made possible.  相似文献   

2.
Production of respiration-deficient (rho?) mutants under growing conditions in a strain of Saccharomyces chevalieri by 4-nitroquinoline 1-oxide (4NQO), a potent carcinogen, reached 100%. the mutation frequency was considerably reduced when eosin Y was applied in various combinations with 4NQO. The counteracting effect was slight when eosin Y was applied concurrently with 4NQO, but was very strong adn persistent when eosin Y was impregnated into the yeast cells before their exposure to 4NQO. Eosin B, erythrosin B and uranin also showed more or less counteracting effects against 4 NQO in producing the rho? mutants. Possible mechanisms for the counteracting effects of these dyestuffs against 4NQO are discussed in relation to antimutagenesis and chemotherapeutic interference.  相似文献   

3.
A glycine-resistant mutant, no. 18, which was not lysed by glycine, was obtained from an l-serine-producing mutant, S395 (temperature-sensitive, O-methylserine-resistant), of a facultative methylotroph, Pseudomonas MS31. The mutant stably produced l-serine from glycine. The properties of the enzymes involved in the synthesis and degradation of l-serine were investigated in the wild-type strain MS31 and the l-serine-producing mutants. Mutant derivation had no effect on the activities of methanol dehydrogenase or serine hydroxymethyltransferase, which are involved in l-serine synthesis. On the other hand, the activity of l-serine dehydratase (SDH), which degrades l-serine, was reduced in the mutants. Cobalt (Co2+) inhibited SDH activity and its addition (6.5 mM) to the l-serine production culture significantly stimulated l-serine accumulation up to 14.9 mg/ml. The results suggest that blocking of SDH is important for the efficient production of l-serine from glycine by methylotrophs.  相似文献   

4.
Serine production from methanol and glycine was tried using frozen-thawed resting cells of a methylotroph, Protomonas extorquens NR-1 under multi-variable controlled conditions. The conditions for l-serine formation were optimized at 30°C. The production of l-serine in 0.4% CaCl2 solution (initial pH 8.2) was the same as in 0.1 M Tris-HCl buffer (initial pH 8.3). Increasing the initial glycine concentration promoted l-serine formation. A high aeration rate decreased l-serine production. The optimum concentrations of dissolved oxygen and methanol were 0.5 ppm and 10 g/l, respectively. The highest l-serine, 24.9 g/l, was obtained at 24 h from 30.94 gl (as dry weight) resting cells using 100 g/l initial glycine with controlled pH. The relationship between the initial rate of l-serine formation and cell concentration indicated an unusual curve due to the effects of the added NaOH which was used for controlling the pH. In similar experiments without control of pH, a normal profile was observed with respect to the relationship between the initial rate of l-serine formation and cell concentration. The highest l-serine, 54.5 g/l, was obtained at 48 h by 36.4 g/l (as dry weight) resting cells. The yield (mol of l-serine/mol of added substrate) of l-serine from methanol and glycine were 8.3% and 39.3%, respectively. The selectivity of l-serine (mol of l-serine/mol of glycine consumed) was 67.9%. The stoichiometry of the maximum l-serine formation showed that the resting cells carried the highly active methanol dehydrogenase while serine transhydroxymethylase was rather low. Serine glyoxalate aminotransferase was not completely inhibited by the high concentration of glycine (about 68% of synthesized l-serine was detected in the supernatant.  相似文献   

5.
Methods are desribed for the use of l-serine dehydratase purified from Clostridium acidiurici for the determination of l-serine concentration and l[14C]serine specific radioactivity in sheep plasma. A spectrophotometric assay using this enzyme accurately measured the concentration of l-serine in standard solutions and in a commercially available mixture of amino acids and related compounds. This assay was shown to be suitable for measurement of plasma l-serine concentrations in excess of 30 μm. The reverse isotope dilution method was used for plasma l-[14C]serine specific radioactivity measurements. Carrier l-serine was added to plasma and separated from neutral and anionic compounds using ion-exchange chromatography. The l-serine was then converted to pyruvate with l-serine dehydratase and this was purified as the phenylhydrazone derivative. After recrystallization, drying and weighing, the derivative was assayed for radioactivity. The accuracy of this method was verified by adding l-[U-14C]serine to plasma and comparing the experimentally determined l-[14C]serine specific radioactivity with the calculated value. The method yielded a value which was 98.6 ± 0.8% (5) of this calculated value.  相似文献   

6.
The kinetics of the killing effect of ethanol was studied at 6–30% concentrations. Ploidy of cells, deficiency of the excision-repair system or holding under no-growth conditions did not influence survival.Ethanol at 24% increased, in the strain, the number of respiration-deficient cells from a spontaneous level of 0.4% up to nearly half of all survivors.Genetic analysis showed the mitochondrial nature of induced respiration-deficient mutants (or rho?).The influence of yeast resistance to some antibiotics was studied on rho? mutagenesis, both spontaneous and induced by ethanol. Neomycin-resistant strains were characterized by a significantly lower level of these mutations than were neomycin-sensitive strains.  相似文献   

7.
Short-chain dehydrogenase/reductase homologues from Escherichia coli (YdfG) and Saccharomyces cerevisiae (YMR226C) show high sequence similarity to serine dehydrogenase from Agrobacterium tumefaciens. We cloned each gene encoding YdfG and YMR226C into E. coli JM109 and purified them to homogeneity from the E. coli clones. YdfG and YMR226C consist of four identical subunits with a molecular mass of 27 and 29 kDa, respectively. Both enzymes require NADP+ as a coenzyme and use l-serine as a substrate. Both enzymes show maximum activity at about pH 8.5 for the oxidation of l-serine. They also catalyze the oxidation of d-serine, l-allo-threonine, d-threonine, 3-hydroxyisobutyrate, and 3-hydroxybutyrate. The kcat/Km values of YdfG for l-serine, d-serine, l-allo-threonine, d-threonine, l-3-hydroxyisobutyrate, and d-3-hydroxyisobutyrate are 105, 29, 199, 109, 67, and 62 M?1 s?1, and those of YMR226C are 116, 110, 14600, 7540, 558, and 151 M?1 s?1, respectively. Thus, YdfG and YMR226C are NADP+-dependent dehydrogenases acting on 3-hydroxy acids with a three- or four-carbon chain, and l-allo-threonine is the best substrate for both enzymes.  相似文献   

8.
S Baumberg  M G Lovett 《Plasmid》1977,1(1):118-122
In crosses between Escherichia coli donors bearing conjugative plasmids and recipients carrying mutant rho alleles, the yield of transconjugants was almost always depressed in comparison with the isogenic rho+ strain. The effect was no longer shown by Rho+ revertants and segregated with the rho allele in transductional crosses. In cases where a rho+ transduction recipient carried R100 or derivatives of R1 (all of which show the effect in extreme degree), no rho? transductants were obtained, suggesting that the combination of this plasmid with a chromosomal rho mutation adversely affects colony forming ability.  相似文献   

9.
We found that some reaction products were produced from indole-mimic compounds, such as indoline (2,3-dihydroindole), indazole, 7-azaindole and 3-indazolinone, with l-serine by the catalytic action of the lyophilized cells of Escherichia coli T4-3 (a mutant defective in indole-3-glycerolphosphate synthase [EC 4.1.1.48]) cultured in a tryptophan-limited medium.A main product from indoline and l-serine was isolated and identified as a-amino-β-(1-indoline) propionic acid (AIP) from data obtained by paperchromatography, elemental analysis, UV, IR, 1H-NMR and mass spectrometry.The reaction conditions and the requirements for the reaction were also studied.AIP was produced only in the case of using l-serine, l-serine methylester and l-serine ethylester as the amino acid source.On the enzyme concerned AIP production, studies were carried out by using the mutant strains of E. coli defective in the enzyme(s) of tryptophan operon. Tryptophan synthase [EC 4.2.1.20], particularly its B protein, was presumed to be a possible candidate.  相似文献   

10.
Fermentative production of l-serine from glycine by Corynebacterium glycinophilum AJ-3413, an auxotrophic mutant of Leu and Met with increased productivity of l-serine using a one liter jar fermentor was carried out and the properties of serine hydroxymethyltransferase (SHMT), a key enzyme in l-serine synthesis, of the parental strain AJ-3170 were investigated. SHMT was effectively induced by the addition of glycine to the medium at an early stage of cultivation. Under optimal conditions, AJ-3413 produced 16.0 g/l of l-serine from 30 g/l of glycine with a molar yield of 38%. The partially purified SHMT catalyzed the l-allo-threonine degradation in addition to l-serine degradation, but could not catalyze l-threonine degradation. This enzyme showed an absolute tetrahydrofolic acid requirement for l-serine degradation to glycine and formaldehyde, but not for l-allo-threonine degradation. Pyridoxal 5′-phosphate appeared to be required for enzyme activity. The Km values for glycine and formaldehyde in l-serine synthesis, and for l-serine in l-serine degradation were 1.85, 0.29 and 1.64 mM, respectively.  相似文献   

11.
Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Using Saccharomyces cerevisiae as a model organism, we analyzed the consequences of disrupting mitochondrial function on mutagenesis of the nuclear genome. We measured the frequency of canavanine-resistant colonies as a measure of nuclear mutator phenotype. Our data suggest that mitochondrial dysfunction leads to a nuclear mutator phenotype (i) when oxidative phosphorylation is blocked in wild-type yeast at mitochondrial complex III by antimycin A and (ii) in mutant strains lacking the entire mitochondrial genome (rho0) or those with deleted mitochondrial DNA (rho). The nuclear mutation frequencies obtained for antimycin A-treated cells as well as for rho and rho0 cells were ~2- to 3-fold higher compared to untreated control and wild-type cells, respectively. Blockage of oxidative phosphorylation by antimycin A treatment led to increased intracellular levels of reactive oxygen species (ROS). In contrast, inactivation of mitochondrial activity (rho and rho0) led to decreased intracellular levels of ROS. We also demonstrate that in rho0 cells the REV1, REV3 and REV7 gene products, all implicated in error-prone translesion DNA synthesis (TLS), mediate mutagenesis in the nuclear genome. However, TLS was not involved in nuclear DNA mutagenesis caused by inhibition of mitochondrial function by antimycin A. Together, our data suggest that mitochondrial dysfunction is mutagenic and multiple pathways are involved in this nuclear mutator phenotype.  相似文献   

12.
The mitochondrial genetic locus oxi 1 contains the structural gene for subunit II of Cytochrome c oxidase. In this study, the oxi 1 locus, or at least a major portion of it, has been localized to a 2·4 kb2 HpaII fragment of mitochondrial DNA, by examining the mtDNA of oxi 1 mutants, and rho? yeast strains that selectively retained in amplified form, this region of the mitochondria) genome. The 2·4 kb fragment is missing from the mtDNA of an oxi 1 locus deletion mutant, but is present in the mtDNAs retained by two rho? strains that genetically recombine with all 16 oxi 1 mutants tested, to produce respiring progeny. Two other rho? strains, that retained different but overlapping portions of the oxi 1 locus as determined genetically, contained mtDNAs consisting of “cloned” segments derived from within the 2·4 kb fragment: these rho? mtDNAs hybridized only to the 2·4 kb HpaII fragment of wild-type mtDNA and could not be cleaved with HpaII. Furthermore, these two rho? mtDNAs were found to correspond to sequences from opposite sides of the 2·4 kb fragment that overlap for 100 to 300 base-pairs near the middle of the fragment. Thus, five oxi 1 mutations that recombine with both of these rho? strains could be further localized to this relatively short region of overlap. One such mutation, of particular interest because it produces an altered form of subunit II, was shown to lie on a 75-base-pair fragment that maps in this region of the overlap. The 75-base-pair fragment from the mutant migrates slightly faster during electrophoresis than the corresponding wild-type fragment. In contrast, the mobility of the fragment from a spontaneous revertant was indistinguishable from wild type.  相似文献   

13.
14.
Mitochondrial control of sugar utilization in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2  
H R Mahler  D Wilkie 《Plasmid》1978,1(2):125-133
When a number of wild-type strains of Saccharomyces cerevisiae—all capable of utilizing the three sugars galactose, maltose, and α-methyl-d-glucoside for growth—were converted by ethidium bromide (EtdBr) mutagenesis to stable cytoplasmic petite (rho?) mutants, the latter lost the ability to grow on one or more of these sugars. The actual pattern of retention (or loss) or sugar utilization by these mutants depended on the wild-type strain, but was independent of the length of exposure to EtdBr during mutagenesis. This treatment varied from 0.5 to 24 h, by which time the majority of the mutants must have been of the mitochondrial (mt) DNA-deficient rho0 type. Furthermore, with one exception—involving the ability of one set of mutants to utilize α-methyl-glucoside—all rho? mutants derived from the same wild type exhibited the same, discrete pattern of sugar utilization. Respiration-deficient mutants with defined lesions in their mtDNA (mit? mutants) exhibited the same pattern of sugar utilization as did the petite mutants of the same strain. Diploid petite strains also exhibited discrete, but less stringent, patterns of sugar utilization. For any one genotype this pattern was identical whether the mutant was generated by crossing two haploid rho? strains, themselves derived by EtdBr mutagenesis, or by EtdBr mutagenesis of the diploid obtained from a haploid wild-type × wild-type cross. In such mutant diploids the sugar-positive phenotype was usually dominant, but there were indications in some instances of modulation of this effect by virtue of nuclear gene interactions. Various respiration-deficient mutants incapable of utilizing α-methylglucoside also were unable to form α-glucosidase, but were able to do so after being rendered permeable by exposure to dimethyl sulfoxide. Arguments are advanced that respiring mitochondria generate an entity—probably not directly related to ATP production—required for the expression of nuclear genes or their products, some of which may be necessary for plasma membrane function.  相似文献   

15.
When Escherichia coli or Bacillus subtilis cells having inhibited thymidylate synthetase activity were incubated for a long time on solid medium supplemented with a limiting concentration of thymine or thymidine (0.1–0.3 μg/ml) most of them became mutants for one or more genetic markers. This “overall mutagenesis” was detected both in Thy? bacteria and in prototrophs for thymine (Thy+) with thymidylate synthetase inhibited by the addition of 5-fluorodeoxyuridine (FUdR) to the growth medium. When thymine (or thymidine) was present in very low amounts (10?3 μg/ml) or was totally absent, the efficiency of mutagenesis decreased some 100-fold. The solid growth medium is essential because it supports the filamentous cells grown under conditions of limiting thymine.For some of the mutants with identified deficiency their ability to revert under the action of different mutagens was studied. Most efficient was 5-bromouracil (BU). This reversion is the characteristic response of mutations due to AT → GC transitions. In addition to single mutants, many multiple mutants were induced. The repair-defective strain of E. coli pol A1? and strains Rec A? and Exr A?, which are also defective in UV-induced mutagenesis, showed a high level of mutation induction under the conditions described. All these results are in accord with the hypothesis that overall low-thymine mutagenesis reflects the accumulation of replication errors in DNA under the conditions of a precursor deficiency.  相似文献   

16.
Iodide (I?) retained by the brown macroalga Laminaria digitata at millimolar levels, possesses antioxidant activities, but the wider physiological significance of its accumulation remains poorly understood. In its natural habitat in the lower intertidal, L. digitata experiences salinity changes and osmotic homeostasis is achieved by regulating the organic osmolyte mannitol. However, I? may also holds an osmotic function. Here, impacts of hypo- and hypersaline conditions on I? release from, and accumulation by, L. digitata were assessed. Additionally, mannitol accumulation was determined at high salinities, and physiological responses to externally elevated iodine concentrations and salinities were characterised by chl a fluorometry. Net I? release rates increased with decreasing salinity. I? was accumulated at normal (35 S A) and high salinities (50 S A); this coincided with enhanced rETRmax and qP causing pronounced photoprotection capabilities via NPQ. At 50 S A elevated tissue iodine levels impeded the well-established response of mannitol accumulation and prevented photoinhibition. Contrarily, low tissue iodine levels limited photoprotection capabilities and resulted in photoinhibition at 50 S A, even though mannitol was accumulated. The results indicate a, so far, undescribed osmotic function of I? in L. digitata and, thus, multifunctional principles of this halogen in kelps. The osmotic function of mannitol may have been substituted by that of I? under hypersaline conditions, suggesting a complementary role of inorganic and organic solutes under salinity stress. This study also provides first evidence that iodine accumulation in L. digitata positively affects photo-physiology.  相似文献   

17.
We studied phosphopeptidomannans (PPMs) of two Saccharomyces cerevisiae NCYC 625 strains (S. diastaticus): a wild type strain grown aerobically, anaerobically, and in the presence of antimycin and a [rho0] mutant grown aerobically and anaerobically. The aerobic wild-type cultures were highly flocculent, but all others were weakly flocculent. Ligands implicated in flocculation of mutants or antimycin-treated cells were not aggregated as much by concanavalin A as were those of the wild type. The [rho0] mutants and antimycin-treated cells differ from the wild type in PPM composition and invertase, acid phosphatase, and glucoamylase activities. PPMs extracted from different cells differ in the protein but not in the glycosidic moiety. The PPMs were less stable in mitochondrion-deficient cells than in wild-type cells grown aerobically, and this difference may be attributable to defective mitochondrial function during cell wall synthesis. The reduced flocculation of cells grown in the presence of antimycin, under anaerobiosis, or carrying a [rho0] mutation may be the consequence of alterations of PPM structures which are the ligands of lectins, both involved in this cell-cell recognition phenomenon. These respiratory chain alterations also affect peripheral, biologically active glycoproteins such as extracellular enzymes and peripheral PPMs.  相似文献   

18.
Changes in trehalose accumulation and in cytochromes during diauxic growth in glucose medium were examined in a normal Saccharomyces cerevisiae strain. While no appreciable disaccharide accumulation occurred during most of the logarithmic phase, a rapid synthesis took place during the final stages. The intrinsic capacity of cells to accumulate trehalose was also determined under nonproliferating conditions, in glucose medium lacking a nitrogen source. Cells harvested at an early growth stage had a much lower trehalose accumulation capacity than cells taken after glucose was exhausted from the culture medium. A high trehalose accumulation capacity could also be obtained at any growth stage by using maltose or galactose as carbon source. Since cells grown under various conditions exhibit a correlated change in cytochrome development and in trehalose accumulation capacity, it was concluded that the level of glucose repression determines the concentration and/or state of activation of the trehalose synthetase-trehalase complex. Independent control of trehalose accumulation capacity and mitochondrial biogenesis by the level of glucose repression was shown in two ways: by demonstrating derepression of trehalose accumulation without development of cytochromes a and c in microaerobic cells, and by showing repression-dependent changes in a cytoplasmic respiration-deficient (ρ?) mutant, which lacked functional mitochondria. Therefore, the capacity of a cell to accumulate trehalose is not regulated solely by the supply of ATP generated by oxidative phosphorylation.  相似文献   

19.
Microalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.5, 3.0, 6.0, and 9.0?×?106 cells mL?1. The intracellular stored phosphorus supported cell growth when extracellular phosphorus was absent. The maximum starch content of 44.1 % was achieved in the lowest ICD culture, while the maximum biomass productivity of 0.71 g L?1 day?1, starch concentration of 1.6 g L?1, and starch productivity of 0.30 g L?1 day?1 were all obtained in the culture with the ICD of 3.0?×?106 cells mL?1. Appropriate ICD could be used to regulate the intracellular phosphorus concentration and maintain adequate photosynthetic activity to achieve the highest starch productivity, along with biomass and starch concentration. The recovery of phosphorus-deprived T. subcordiformis in medium containing 0.5, 1.0, or 6.0 mM KH2PO4 was also tested. Cell growth and starch accumulation ability could be recovered completely. A phosphorus pool in T. subcordiformis was shown to manipulate its metabolic activity under different environmental phosphorus availability. Though lower starch productivity and starch content were achieved under phosphorus deprivation compared with nitrogen- or sulfur-deprived conditions, the higher biomass and starch concentration make T. subcordiformis a good candidate for biomass and starch production under extracellular phosphorus deprivation.  相似文献   

20.
l-allo-Threonine aldolase (l-allo-threonine acetaldehyde-lyase), which exhibited specificity for l-allo-threonine but not for l-threonine, was purified from a cell-free extract of Aeromonas jandaei DK-39. The purified enzyme catalyzed the aldol cleavage reaction of l-allo-threonine (Km=1.45 mM, Vmax=45.2 μmol min−1 mg−1). The activity of the enzyme was inhibited by carbonyl reagents, which suggests that pyridoxal-5′-phosphate participates in the enzymatic reaction. The enzyme does not act on either l-serine or l-threonine, and thus it can be distinguished from serine hydroxy-methyltransferase (l-serine:tetrahydrofolate 5,10-hydroxy-methyltransferase, EC 2.1.2.1) or l-threonine aldolase (EC 4.1.2.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号