首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic α-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progessively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight α-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the α-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

2.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4·1011 is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

3.
The interaction between the (Na+ + K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5′-AMP, cyclic GMP or 5′-GMP, could inhibit the (Na+ + K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ + K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854–3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ + K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ + K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ + K+)-ATPase, resulted in a decrease in overall (Na+ + K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ + K+)-ATPase has no effect on (Na+ + K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ + K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ + K+)-ATPase was unaffected.  相似文献   

4.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

5.
The partial purification of (Na+ + K+)-ATPase from pig lens has been achieved by treatment with deoxycholate followed by density gradient centrifugation. The specific activity of the final preparation, ranging from 300 to 500 nmol/h per mg protein, is increased approx. 100-fold compared to the homogenate. A parallel increase in p-nitrophenylphosphatase activity is also observed. Sodium dodecyl sulfate (SDS) gel electrophoresis reveals six major protein bands, one of which is the 93 kDa α subunit of (Na+ + K+)-ATPase which can be phosphorylated by reaction with [γ-32P]ATP. A second band contains a glycoprotein which displays an apparent molecular weight of 51 000 and thus appears to be the β subunit of the enzyme. The enzyme is sensitive to ouabain with the I50 for (Na+ + K+)-ATPase and p-nitrophenylphosphatase inhibition being 1.2 and 1.3 μM, respectively. Several agents which inhibit Na+ + K+)-ATPase from other tissues such as oligomycin, Ca2+, vanadate, N-ethylmaleimide, p-chloromercuribenzenesulfonic acid (PCMBS) and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) also inhibit the lens enzyme. Monovalent cations other than K+ are partially effective in activating the (Na+ + K+)-ATPase and p-nitrophenylphosphatase activities. The K+ congeners were relatively more effective in supporting (Na+ + K+)-ATPase compared to p-nitrophenylphosphatase activity. Other kinetic properties of the lens enzyme are also comparable to those of the enzyme from other tissues. Utilizing the partially purified membrane bound enzyme, discontinuities in Arrhenius plots of (Na+ + K+)-ATPase activity, p-nitrophenylphosphatase activity and fluoresence polarization of the fluidity probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), are observed near the physiological temperature of lens. The possible significance of these observations for the mechanism of cataract formation are discussed.  相似文献   

6.
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ + K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric αβ-unit of the enzyme protein. In phosphate-induced crystals an (αβ)2-unit occupies one unit cell suggesting that interactions between αβ-units can be of importance in the function of the Na+, K+ pump.  相似文献   

7.
8.
A microsomal fraction rich in (Na+ + K+)-ATPase has been isolated from the outer medulla of pig kidney. (Mg2+ + K+)-activated ouabain-sensitive phosphatase activity was studied in this preparation treated with arylsulphatase, an enzyme that specifically hydrolyzes ceramide galactose-3-sulphate. The activity of phosphatase was inactivated in proportion to the amount of sulphatide hydrolyzed. A maximum inactivation of ouabain-sensitive activity was obtained with 60% of the sulphatide content hydrolyzed. The inactivation caused by arylsulphatase was partially reversed by the sole addition of sulphatide. The evidence offered in this paper about sulphatide function in the sodium pump mechanism supports the idea that sulphatides are involved in the K+-activated phosphatase, a partial reaction of the (Na+ + K+)-ATPase.  相似文献   

9.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [γ-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 μM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

10.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

11.
Effects of temperature on the Na+-dependent ADP-ATP exchange and the p-nitrophenylphosphatase reactions catalysed by (Na+, K+)-ATPase were examined. Apparent Mg2+ affinity decreased with decreasing temperature. Arrhenius plots of p-nitrophenylphosphatase in the presence of Na+ and ATP had discontinuities similar to those previously reported for (Na+ + K+)-ATPase, while those of p-nitrophenylphosphatase measured without Na+ or ATP did not. The apparent activation energy for p-nitrophenylphosphatase was a function of the physical characteristics of the cation acting at the K+ site.  相似文献   

12.
Treatment by EDTA of purified plasma membranes from MF2S cells (a variant of the murine plasmacytoma MOPC 173) solubilized proteins and increased by a 1000-fold the sensitivity of (Na+ + K+)-ATPase to ouabain. When added back with Ca2+ to treated plasma membranes, these EDTA-solubilized proteins restored the initial sensitivity of the enzyme to its inhibitor. We report the purification of a protein of Mr 32 000, isolated from the EDTA-treated membrane supernatant. This protein was purified by a one-step procedure involving a preparative polyacrylamide gel electrophoresis without detergent. In the presence of Ca2+ it was able to restore the original sensitivity to ouabain of (Na+ + K+)-ATPase from EDTA-treated membrane. This protein was shown to be similar to the β-actinin described by Maruyama by the following criteria: (1) molecular weight and amino acid composition; (2) cross-reactivity with their respective antisera; (3) in the presence of Ca2+ the same quantitative biological activity on ouabain sensitivity of the (Na+ + K+)-ATPase. A possible interaction between β-actinin, calmodulin and membrane-bound (Na+ + K+)-ATPase is discussed.  相似文献   

13.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

14.
Human red cell and guinea pig kidney (Na+ + K+)-ATPase were phosphorylated at 0°C. Using concentrations of ATP ranging from 10?6 to 10?8 M, ATP-dependent regulation of reactivity is observed with red cell but not kidney (Na+ + K+)-ATPase at 0°C. In particular, with the red cell enzyme only, the following are observed: (i) the ratio of enzyme-bound ATP (E·ATP, measured by the pulse-chase method of Post, R.L., Kume, S., Tobin, T., Orcutt, B. and Sen, A.K. (1969) J. Gen. Physiol. 54, 306s-326s) to steady-state level of total phosphoenzyme (EP) decreases with decrease in ATP concentration and (ii) the apparent turnover of phosphoenzyme (ratio of Na+-stimulated ATP hydrolysis to level of total EP at steady state) also varies as a function of ATP concentration. In addition, when EP is formed at very low ATP (0.02 μM), and then EDTA is added, rapid disappearance of a fraction of EP occurs, presumably due to ATP resynthesis, only with the red cell enzyme. These differences in behaviour of the red cell and kidney enzymes are explained on the basis of the observed predominance of K+-insensitive EP in red cell, but K+-sensitive EP in kidney (Na+ + K+)-ATPase at 0°C.  相似文献   

15.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

16.
Ca2+-dependent K+ transport and plasma membrane NADH dehydrogenase activities have been studied in several ‘high-K+’ (human, rabbit and guinea pig) and ‘low-K+’ (dog, cat and sheep) erythrocytes. All the species except sheep showed Ca2+-dependent K+ transport. NADH-ferricyanide reductase was detected in all the species and showed positive correlation with the flavin contents of the membranes. NADH-cytochrome c reductase was very low or absent in dog, sheep and guinea pig membranes. No correlation was found between NADH dehydrogenase and Ca2+-dependent K+ channel activities in the species studied. Nor were any of the above activities correlated with (Na+ + K+)-ATPase activity.  相似文献   

17.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   

18.
(1) Eosin bound to the (Na+ + K+)-ATPase in the presence of K+ has practically the same fluorescence as eosin without enzyme while in the presence of Na+ the fluorescence is higher, the excitation maximum is shifted from 518 to 524 nm, the emission maximum from 538 to 542 nm, and a shoulder appears at about 490 nm on the excitation curve. (2) The amount of eosin bound increases with the K+ concentration but with a low affinity. With equal concentrations of Na+ and K+ more is bound in the presence of Na+, and the difference between 150 mM Na+ and 150 mM K+ shows one high-affinity eosin binding site per 32P-labelling site (KD 0.45 μM). With lower concentrations of the cations there are between one and two Na+-dependent high-affinity eosin binding sites per 32P-labelling site. (3) ATP (and ADP) prevents the hig-affinity Na+-dependent eosin binding and there is competition between eosin and ATP for the hydrolysis in the presence of Na+ (+Mg2+). (4) Eosin, like ATP, increases the Na+ relative to K+ affinity (Na+ + K+ = 150 mM) for Na+ activation of hydrolysis and for Na+ protection against inactivation by N-ethylmaleimide. (5) The results suggest that the high affinity eosin binding site is an ATP binding site and that it is located on the enzyme in an environment with a low polarity, i.e., the conformational change induced by Na+ opens a high-affinity site for ATP while K+ closes the site (or decreases the affinity to a low level). The experiments suggest, furthermore, that the ATP which increases the Na+ relative to K+ affinity of the internal sites is not the ATP which is hydrolyzed, i.e., in a turnover cycle in the presence of Na+ + K+ the system reacts with two different ATP molecules.  相似文献   

19.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

20.
1. Extensive treatment of rabbit kidney microsomes with phosphatidylinositol-specific phospholipase C under various conditions never resulted in more than 75% hydrolysis of the substrate. 2. The non-degraded fraction of the phosphatidylinositol (10–12 nmol per mg microsomal protein) could be recovered only by an acidic extraction procedure. 3. The (Na+ + K+)-ATPase activity found in those membranes was not affected by this treatment. 4. Complete degradation of phosphatidylinositol could be easily achieved when the phospholipase was applied to rat liver microsomes which do not contain any detectable (Na+ + K+)-ATPase activity. 5. It is concluded that in rabbit kidney microsomes a close association exist between the (Na+ + K+)-ATPase and that fraction of the phosphatidylinositol that is directly involved in the maintenance of its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号