首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External ATP causes passive permeability change in several transformed cells, but not in untransformed cells. We studied the effect of external ATP on the passive permeability of CHO-K1 cells, a transformed clone of Chinese hamster ovary cells. Treatment of the cells with external ATP alone did not produce a permeability change, and this was observed only when a mitochondrial inhibitor, such as rotenone or oligomycin, was present together with ATP. These inhibitors reduced the concentration of intracellular ATP and a permeability change by external ATP was observed when intracellular ATP was decreased more than 70%. This requirement for permeability change of CHO-K1 cells was quite unique, since passive permeability change of other transformed cells so far tested was induced by ATP alone. Treatment of CHO-K1 cells with cyclic AMP analogues increased their sensitivity to external ATP about 2-fold. The roles of external and intracellular ATP in controlling passive permeability are discussed.  相似文献   

2.
Using 32P-labeled phosphocasein or phosphohistones as exogenous substrates it was possible to detect a phosphoprotein phosphate activity on the outer surface of intact normal and transformed 3T3 fibroblasts. Incubation of monolayers of intact cells in buffered salt solution with the radioactively labeled substrate resulted in the release of alkali-labile 32P counts into the surrounding medium. The reaction was: (a) linear with time (at least up to 20 min); (b) proportional to the cell density; (c) dependent on the temperature and pH of the incubation medium; (d) stimulated by K+; and (e) inhibited by sodium fluoride, inorganic pyrophosphate, zinc chloride and relatively impermeant sulfhydryl reagents. Less than 2% of the externally located phosphoprotein phosphatase activity was detectable in pooled cell-free washings of the intact cell monolayer. Phosphocasein did not cause any detectable leakage of intracellular lactate dehydrogenase or soluble phosphoprotein phosphatase activity into the external medium; incubation of the cells with phosphohistones, on the other hand, resulted in appreaciable leakage of both these cytoplasmic activities. Neoplastic transformation was associated with a nearly two-fold decrease in the activity of the surface phosphoprotein phosphatase. Addition of serum to either non-transformed 3T3 or spontaneously transformed 3T6 cells resulted in a rapid and remarkable drop in the cell surface dephosphorylating activity. Acrylamide gel electrophoresis of the dephosphorylated casein or histone substrate revealed no proteolytic degradation or change in electrophoretic mobility. The intact cells showed no damage upon microscopic examination as a result of exposure to phosphocasein or phosphohistones.  相似文献   

3.
Summary Regulation of passive potassium ion transport by the external calcium concentration and temperature was studied on cell cultures of 3T3 mouse cells and their DNA-virus transformed derivatives. Upon lowering of external calcium concentration, passive potassium efflux generally exhibits a sharp increase at about 0.1mm. The fraction of calcium-regulated potassium efflux is largely independent of temperature in the cases of the transformed cells, but shows a sharp increase for 3T3 cells upon increasing temperature above 32°C. In the same range of temperature, the 3T3 cells exhibit the phenomenon of high-temperature inactivation of the residual potassium efflux at 1mm external calcium. At comparable cellular growth densities, the transformed cell lines do not show high-temperature inactivation of residual potassium efflux. These results are consistent with the notion of a decisive role of the internal K+ concentration in the cell-density dependent regulation of cell proliferation. In particular, the growth-inhibiting effect of lowering the external Ca2+ concentrations is considered as largely due to a rise of passive K+ efflux and a subsequent decrease of internal K+ concentration. The experimental data on the Ca2+ dependence of passive K+ flux are quantitatively described by a theoretical model based on the constant field relations including negative surface charges on the external face of the membrane, which cooperatively bind Ca2+ ions and may concomitantly undergo a lateral redistribution. The present evidence is consistent with acidic phospholipids as representing these negative surface charges.This work is dedicated to the memory of Max Delbrück (deceased March 10, 1981), in whose laboratory in 1966 the earlier version of the present theoretical model was developed by one of the authors.  相似文献   

4.
The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

5.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10?10 M to 10?7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

6.
A photoreactive analogue of ATP, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) altered the plasma membrane permeability of transformed 3T6 mouse fibroblasts to normally impermeant molecules as previously reported for ATP, but at lower concentrations. BzATP-induced permeabilization was modulated by pH, temperature, and the ionic composition of the medium similar to the permeabilizing effects of ATP. Conditions known to enhance ATP-induced permeabilization, such as treatment with the mitochondrial uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP) or the Ca2+-calmodulin antagonist trifluoperazine also enhanced BzATP-induced permeabilization. Conditions inhibitory to ATP-induced permeabilization, including chloride replacement or treatment with furosemide or dithiothreitol (DTT), inhibited permeabilization induced by BzATP. The ionic strength of the medium modulated the responsiveness of the cells to ATP and BzATP; a decrease in the ionic strength below isotonicity increased the sensitivity of the cells to the nucleotides, whereas an increase in ionic strength above isotonicity inhibited permeabilization. Prolonged exposure to ATP under non-permeabilizing conditions caused the cells to become insensitive to ATP and BzATP. The densensitization phenomenon provides support for the theory that the permeabilization process is mediated by a receptor for ATP.  相似文献   

7.
An ATP-dependent mechanism for Ca2+ uptake in human platelet membrane fractions has been identified and characterized. Ca2+ uptake into a membrane fraction is shown to be stimulated at low concentrations of ATP and Ca2+ and to require magnesium ions. Initial rate kinetics, using Eadie-Scatchard analysis, indicated a single class of calcium uptake sites in the presence of ATP, with a Kd for free [Ca2+] of 0.145 μM. Ca2+ uptake in the presence of several ATP concentrations demonstrates that ATP binds to at least two sites, representing high and low affinities of 3.21 and 80.1 μM, respectively. The neuroleptic drug fluphenazine inhibited ATP-stimulated calcium uptake (IC50 = 55 μM), suggesting this ATP-dependent Ca2+ uptake system may provide a useful ion-transport model with which to study neuroleptic therapy in humans.  相似文献   

8.
Low concentrations of chelating agents such as EDTA prevent the air oxidation of vanadyl (VO2+, +4 oxidation state) to vanadate (VO3?, +5 oxidation state). Under these conditions, the ionophore A23187 mediates the rapid entry of vanadyl into human erythrocytes. In the presence of A23187, vanadyl at concentrations in excess of EDTA gives rise to a dramatic increase in K+ permeability, which is very similar to the Gardos Ca2+-induced K+ permeability increase with respect to ion selectivity, response to inhibitors, effects of pH, and stimulation by external K+. In ultrapure media with very low Ca2+, however, vanadyl has no effect on K+ permeability. These experiments suggest that Ca2+ is displaced from EDTA by vanadyl and then enters the cell via A23187 where it triggers the increase in K+ permeability. This hypothesis is confirmed by experiments demonstrating that vanadyl does displace Ca2+ from EDTA. Vanadate, an inhibitor of Ca2+-ATPase, causes a selective increase in K+ permeability in metabolically depleted cells, but the increase is abolished by low concentrations of EDTA, indicating that this effect is also due to entry of extracellular Ca2+. Earlier observations of effects of vanadyl and vanadate on erythrocyte K+ permeability can thus be explained on the basis of inhibition of the Ca2+ pump by vanadium, leading to an increase in intracellular Ca2+ concentration.  相似文献   

9.
BAX cooperates with truncated BID (tBID) and Ca2+ in permeabilizing the outer mitochondrial membrane (OMM) and releasing mitochondrial apoptogenic proteins. The mechanisms of this cooperation are still unclear. Here we show that in isolated brain mitochondria, recombinant BAX readily self-integrates/oligomerizes in the OMM but produces only a minuscule release of cytochrome c, indicating that BAX insertion/oligomerization in the OMM does not always lead to massive OMM permeabilization. Ca2+ in a mitochondrial permeability transition (mPT)-dependent and recombinant tBID in an mPT-independent manner promoted BAX insertion/ oligomerization in the OMM and augmented cytochrome c release. Neither tBID nor Ca2+ induced BAX oligomerization in the solution without mitochondria, suggesting that BAX oligomerization required interaction with the organelles and followed rather than preceded BAX insertion in the OMM. Recombinant Bcl-xL failed to prevent BAX insertion/oligomerization in the OMM but strongly attenuated cytochrome c release. On the other hand, a reducing agent, dithiothreitol (DTT), inhibited BAX insertion/oligomerization augmented by tBID or Ca2+ and suppressed the BAX-mediated release of cytochrome c and Smac/DIABLO but failed to inhibit Ca2+-induced swelling. Altogether, these data suggest that in brain mitochondria, BAX insertion/oligomerization can be dissociated from OMM permeabilization and that tBID and Ca2+ stimulate BAX insertion/oligomerization and BAX-mediated OMM permeabilization by different mechanisms involving mPT induction and modulation of the SH-redox state.  相似文献   

10.
External ATP causes a passive permeability change in several transformed cells, but not in untransformed cells. We previously demonstrated that in CHO-K1 cells, a transformed clone of Chinese hamster ovary cells, the external ATP-dependent permeability change was induced when the intracellular ATP concentration was reduced by a mitochondrial inhibitor (Kitagawa, T. and Akamatsu, Y. (1981) Biochim. Biophys. Acta 649, 76–82). A permeability change with similar characteristics was also observed when the CHO cells were treated with external ATP and a cytoskeleton-attacking agent such as vinblastine or cytochalasin B. Just like mitochondrial inhibitors, vinblastine could increase the sensitivity of transformed 3T3 cells to external ATP but showed no effect on passive permeability of normal 3T3 cells. However, in contrast with the effect of the mitochondrial inhibitors, the cytoskeleton drugs caused the permeability change with little reduction of intracellular ATP concentration, suggesting different actions of these two kinds of drug on the permeability change. The present results suggest an important role of cytoskeletal structures in controlling the external ATP-dependent permeability change in transformed cells. Possible effects of intracellular ATP on cytoskeletal structures are also discussed.  相似文献   

11.
Kinetic analyses were made on intracellular Na+-dependent Ca2+ uptake by myocardial cells and neuroblastoma cells (N-18 strain) in culture. Cells loaded with various concentrations of Na+ could be prepared by incubating them in Ca2+-free medium containing various concentrations of Na+. Cells pre-loaded with various concentrations of Na+ were incubated in medium containing Ca2+ and 45Ca. The resulting 45Ca uptake by the two types of cell depended greatly on the initial intracellular concentrations of Na+. Lineweaver-Burk plots of the initial rate of Ca2+ uptake against the external concentration of Ca2+ fitted well to straight lines obtained by linear regression (r > 0.95). This result shows that Ca2+ uptake by the two types of cell was achieved by a carrier-mediated transport system. This Na+-dependent Ca2+ uptake was accompanied by Na+ release and the ratio of Na+ release to Ca2+ uptake was close to 3 : 1. A comparison of the kinetic data between myocardial cells and N-18 cells suggested that N-18 cells possess a carrier showing the same properties as that of myocardial cells, i.e.: (1) a similar dependency on the intracellular concentration of Na+; (2) the coincidence of the apparent Michaelis constants for Ca2+ (0.1 mM); (3) the similarities of the Ki values for Co2+, Sr2+ and Mg2+ (Co2+ < Sr2+ < Mg2+) and (4) a similar dependency on pH. However, the maximal initial rate, V, of N-18 cells was about 1100 that of myocardial cells. The rate of Na+-dependent Ca2+ uptake by non-excitable cells was much lower than that by myocardial cells.  相似文献   

12.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   

13.
We have evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 · 10?6 M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 > 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 · 10?6 to 1 · 10?5 M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+.  相似文献   

14.
The presence of ATP or ADP in the incubation medium prevents the collapse of membrane potential induced by external Ca2+ and phosphate. The same adenine nucleotides are unable to restore collapsed membrane potential unless Mg2+ are also added. Bongkrekate is also able to prevent the effects of external Ca2+ and phosphate and when added after membrane potential has collapsed strongly potentiates the restorative action of ATP or ADP. Atractyloside has an opposite effect.  相似文献   

15.
Intact dog erythrocytes, whose Ca2+ permeability had been increased with A23187 still maintained intracellular Ca2+ below electrochemical equilibrium indicating that they could extrude Ca2+. This extrusion required no Na+ gradient but apparently depended on intracellular ATP and Mg2+ suggesting that it was mediated by an ATP-fuelled Ca2+ pump.  相似文献   

16.
Changes of intracellular calcium concentration ([Ca2+]i) induced by the extracellular application of ATP and bradykinin in mouse mammary tumour cells (MMT060562) were investigated by image analysis of fluo-3 fluorescence at 24°C and 35°C. ATP (0·1–100 μM ) and bradykinin (0·1 nM –1 μM ) induced the increase of [Ca2+]i at both temperatures and Ca2+-depletion did not affect these [Ca2+]i responses. Both [Ca2+]i responses became more sensitive at 35°C than at 24°C. A clear latency of [Ca2+]i increased after the application of the agonists was observed, and it changed with the concentration of the agonist. As concentrations of ATP or bradykinin became lower, the latency and rise time became longer. At higher concentrations, the latency and rise time approached a constant value. The latency shortened remarkably at 35°C. These results suggested the involvement of a regenerative or threshold process in the [Ca2+]i responses in mammary tumour cells. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular > extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 μM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate.  相似文献   

18.
1.
1. The hypothesis that the inhibitory action of ouabain on the Ca2+-dependent increase in K+ permeability observed in depleted human red cells is mediated by changes in the intracellular level of ATP was tested by measuring simultaneously the ouabain sensitive K+ loss and the concentration of ATP in depleted guinea-pig red cells in the presence and absence of external Ca2+.  相似文献   

19.
An increased cytoplasmic Ca2+ concentration ([Ca2+]i) has been implicated in the pathogenesis of cystic fibrosis. We compared the [Ca2+]i levels of normal and cystic fibrosis peripheral blood lymphocytes and Epstein-Barr virus-transformed lymphoblasts using quin 2, an internally trapped indicator. The [Ca2+]i levels of normal and cystic fibrosis cells were not significantly different. The ionophore-releasable intracellular Ca2+ stores were also comparable in both types of individual.  相似文献   

20.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号