首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daniels CS  Rubinsky B 《PloS one》2011,6(6):e20877
Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments.  相似文献   

2.
Electric fields induced by low-frequency magnetic fields into inhomogeneous structures, which have electric conductivities and dielectric permittivities of typical biological substances, are evaluated. Closed-form approximate and numerical solutions are obtained for nonconcentric cylinders with different electric properties (such as bone embedded in muscle), which are surrounded by a good electrical insulator (such as air). It is shown that even a single inhomogeneity in an otherwise homogenous cylinder, which is exposed to a uniform, axially directed magnetic field, can lead to substantial deviations from the direction and distribution of the induced electric field that would exist in the homogenous cylinder. Thus the induced field is not everywhere circumferential, nor does it magnitude at all angular positions increase linearly with the radial distance. Radially and circumferentially directed field components depend on size, electrical properties, and eccentricity of the inhomogeneities. Equations as well as graphical presentations are given that describe the induced fields when the enclosed inhomogeneities consist either of eccentrically located single cylinders or pairs of coaxial cylinders with different electrical conductivities or dielectric permittivities.  相似文献   

3.
The paper presents results of studies on changes in model membrane properties induced by some single-chain amphiphilic quaternary ammonium salts with fungicidal activity, N-dodecyl-N-methylmorpholinium chloride (IVC), N-dodecyloxymethylene-N-methylmorpholinium chloride (IVD), N-dodecyl-N-methylpiperidinium chloride (VIC), N-dodecyloxymethylene-N-methylpiperidinium chloride (VID) and N-dodecyl-N,N-dimethyl-N-benzy-lammonium chloride (IB). Two different lipid systems were used, namely, unilamellar liposomes and black planar membranes (BLM). All the compounds studied interfered with sulphate ion transport across liposomal membranes as well as with calcium ion desorption from the membranes. The compounds were found also to change the stability of black lecithin membranes. Generally the sequence of effectiveness of the salts studied on both models used was: IB greater than VID greater than IVD greater than VIC greater than IVC, although there were some differences for particular processes. The results obtained are discussed in view of a possible mechanism of the interaction between the salts studied and the lipid model including the role the salt head group structure and charge distribution can play in this interaction.  相似文献   

4.
Daniels CS  Rubinsky B 《PloS one》2011,6(11):e26219
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.  相似文献   

5.
We have previously demonstrated that a nanometer-diameter pore in a nanometer-thick metal-oxide-semiconductor-compatible membrane can be used as a molecular sensor for detecting DNA. The prospects for using this type of device for sequencing DNA are avidly being pursued. The key attribute of the sensor is the electric field-induced (voltage-driven) translocation of the DNA molecule in an electrolytic solution across the membrane through the nanopore. To complement ongoing experimental studies developing such pores and measuring signals in response to the presence of DNA, we conducted molecular dynamics simulations of DNA translocation through the nanopore. A typical simulated system included a patch of a silicon nitride membrane dividing water solution of potassium chloride into two compartments connected by the nanopore. External electrical fields induced capturing of the DNA molecules by the pore from the solution and subsequent translocation. Molecular dynamics simulations suggest that 20-basepair segments of double-stranded DNA can transit a nanopore of 2.2 x 2.6 nm(2) cross section in a few microseconds at typical electrical fields. Hydrophobic interactions between DNA bases and the pore surface can slow down translocation of single-stranded DNA and might favor unzipping of double-stranded DNA inside the pore. DNA occluding the pore mouth blocks the electrolytic current through the pore; these current blockades were found to have the same magnitude as the blockade observed when DNA transits the pore. The feasibility of using molecular dynamics simulations to relate the level of the blocked ionic current to the sequence of DNA was investigated.  相似文献   

6.
Chicken eggs are convenient models for observing the effects of inhomogeneities and variations, such as those found in biological membranes and in cellular conductivities, on the distribution of internal electric fields as induced by exposure to magnetic fields. The vitelline membrane separates the yolk, which has a conductivity of 0.26 S/m, from the white, which has a conductivity of 0.85 S/m. A miniaturized probe with 2.4-mm resolution was used to measure induced fields in eggs placed in a uniform, 1-mT magnetic field at 60 Hz. The E fields induced in eggs with homogenized contents agreed with expectations based on simple theory. Results were similar to intact eggs unless the probe moved the yolk off-center, which greatly perturbed the induced fields. A more reproducible arrangement, which consisted of saline-agar filled dishes with a hole cut for test samples, was developed to enhance definition of electrical parameters. With this test system, the vitelline membrane was found to be responsible for most of the perturbation of the induced field, because it electrically isolates the yolk from the surrounding white. From a theoretical viewpoint, this dosimetry for the macroscopic egg yolk is analogous to the interaction of fields with microscopic cells. These findings may have important implications for research on biological effects of ELF electromagnetic fields, especially for studies of avian embryonic development.  相似文献   

7.
Pulsed electric fields directly influence the electrophysiology of tissue cells by transiently perturbing their transmembrane potential. To determine the magnitude and time course of this interaction, electrotonic cable theory was used to calculate the membrane potential perturbations induced in tissue cells by a spatially uniform, pulsed electric field. Analytic solutions were obtained that predict shifts in membrane potential along the length of cells as a function of time in response to an electrical pulse. For elongated tissue cells, or groups of tissue cells that are coupled electrotonically by gap junctions, significant hyperpolarizations and depolarizations can result from millisecond applications of electric fields with strengths on the order of 10–100 mV/cm. The results illustrate the importance of considering cellular cable parameters in assessing the effects of transient electric fields on biological systems, as well as in predicting the efficacy of pulsed electric fields in medical treatments. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.  相似文献   

9.
Abstract

Cationic liposomes have been studied as a potential carrier for delivering genes to cells for the purpose of gene therapy. This report summarizes our efforts to characterize the in vivo expression of transgene delivered by cationic liposomes via intravenous administrtion. Using a CMV driven gene expression system containing cDNA of luciferase or green fluorescence protein gene as a reporter and two commonly used cationic lipids, 2, 3-dioleoyloxypropyl-1-trimethyl ammonium chloride (DOTMA) and 2, 3-dioleoyloxyl-1-trimethylammonium propanyl chloride (DOTAP), we demonstrate that a significant level of gene expression can be obtained in different organs including the lung, heart, spleen, liver and kidneys following intravenous administration in the mouse. Our finding show that the transfection efficiency of cationic liposomes is determined by the structure of the cationic lipids, the lipid composition of liposomes and cationic lipid to DNA ratio. Furthermore, gene expression was short in duration, peaked between 4-24 hours post injection, and dropped to less than 1% of the peak level within a 4 day period. Experiments with repeated injections revealed that cells initially transfected by the first transfection were not fully responsive to the subsequent second transfection for approximately 14 days.  相似文献   

10.
Plant roots generate electrical currents and associated electrical fields as a consequence of electrogenic ion transport at the root surface. Here we demonstrate that the attraction of swimming zoospores of oomycete plant pathogens to plant roots is mediated in part by electrotaxis in natural root-generated electric fields. The zones of accumulation of anode- or cathode-seeking zoospores adjacent to intact and wounded root surfaces correlated with their in vitro electrotactic behavior. Manipulation of the root electrical field was reflected in changes in the pattern of zoospore accumulation and imposed focal electrical fields were capable of overriding endogenous signals at the root surface. The overall pattern of zoospore accumulation around roots was not affected by the presence of amino acids at concentrations expected within the rhizosphere, although higher concentrations induced encystment and reduced root targeting. The data suggest that electrical signals can augment or override chemical ones in mediating short-range tactic responses of oomycete zoospores at root surfaces.  相似文献   

11.
Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a cruiser-type foraging strategy) moved to a higher electric potential, whereas Steinernema carpocapsae, an ambush-type forager, moved to a lower potential. Thus, we hypothesized that entomopathogenic nematode directional response to electrical fields varies among species, and may be related to foraging strategy. In this study, we tested the hypothesis by comparing directional response among seven additional nematode species: Heterorhabditis bacteriophora, Heterorhabditis georgiana, Heterorhabditis indica, Heterorhabditis megidis, Steinernema feltiae, Steinernema riobrave, and Steinernema siamkayai. S. carpocapsae and S. glaseri were also included as positive controls. Heterorhabditids tend toward cruiser foraging approaches whereas S. siamkayai is an ambusher and S. feltiae and S. riobrave are intermediate. Additionally, we determined the lowest voltage that would elicit a directional response (tested in S. feltiae and S. carpocapsae), and we investigated the impact of nematode age on response to electrical field in S. carpocapsae. In the experiment measuring diversity of response among species, we did not detect any response to electrical fields among the heterorhabditids except for H. georgiana, which moved to a higher electrical potential; S. glaseri and S. riobrave also moved to a higher potential, whereas S. carpocapsae, S. feltiae, and S. siamkayai moved to a lower potential. Overall our hypothesis that foraging strategy can predict directional response was supported (in the nematodes that exhibited a response). The lowest electric potential that elicited a response was 0.1 V, which is comparable to electrical potential associated with some insects and plant roots. The level of response to electrical potential diminished with nematode age. These results expand our knowledge of electrical fields as cues that may be used by entomopathogenic nematodes for host-finding or other aspects of navigation in the soil.  相似文献   

12.
H. J. Coles  B. R. Jennings 《Biopolymers》1975,14(12):2567-2575
The electric field in a single mode, YAG laser beam has been used to induce orientational birefringence in solutions of tobacco rattle virus, DNA, heparin, and hyaluronic acid. Using this laser in its “fixed-Q” mode, laser pulses were generated which persisted for up to 200 μsec in which the effective electric field vector rose to 5 kV cm?1. The birefringence amplitudes so produced had a quadratic dependence on the effective field strength and thus obeyed Kerr's law. From the birefringence decay rates, relaxation times were determined which, by comparison with the birefringence induced by pulsed static electric fields revealed the biopolymer orientational origins of the effects. This indicated how these experiments can lead to the evaluation of particle geometry, the electronic contribution to electrical polarizabilities, and the optical polarizability of biopolymers in solution.  相似文献   

13.
A system is described that is capable of producing extremely low frequency (ELF) magnetic fields for relatively short-term exposure of cultured mammalian cells. The system utilizes a ferromagnetic core to contain and direct the magnetic field of a 1,000 turn solenoidal coil and can produce a range of flux densities and induced electric fields much higher than those produced by Helmholtz coils. The system can generate magnetic fields from the microtesla (μT) range up to 0.14 T with induced electric field strengths on the order of 1.0 V/m. The induced electric field can be accurately varied by changing the sample chamber configuration without changing the exposure magnetic field. This gives the system the ability to separate the bioeffects of magnetic and induced electric fields. In the frequency range of 4–100 Hz and magnetic flux density range of 0.005–0.14 T, the maximum total harmonic distortion of the induced electric field is typically less than 1.0%. The temperature of the samples is held constant to within 0.4°C by constant perfusion of warmed culture medium through the sample chamber. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Electro-optic scattering studies on deoxyribonucleic acid   总被引:1,自引:0,他引:1  
B R Jennings  H Plummer 《Biopolymers》1970,9(11):1361-1372
Measurements have been made of the intensity of light scattered from aqueous solutions of calf thymus DNA with and without the application of electric fields. For fields approaching 150 V/cm and frequencies below 2.5 KHz, changes (ΔI) of up to 10% in the residual scattered intensity were observed. In agreement with previous dielectric and electric birefringence measurements, a low frequency dispersion of ΔI was observed, from which a rotary diffusion constant (D) of 1200 s?1 was determined. Interpreting the electric field data in terms of the classical dipolar orientation theory led to values of 2.4 × 10?25 cm (7.4 × 10?14 esu) and 4.3 × 10?25 cm (13 × 10?14 esu) for the permanent dipole moment and the anisotropy of the electric polarisabilities respectively. Furthermore the permanent dipole moment was along the major molecular axis and the particles orientated in the field as rigid entities. The zero field data indicated a molecular shape which was not rodlike but corresponded to the Kratky-Porod “stiffness” parameter of x = 24 for the wormlike coil model. Although curved, the molecules appeared to orientate in low-intensity electric fields as rigid, but not rodlike molecules. The implications of this on recent discrepancies in D determined by two or more dynamic relaxation methods is briefly discussed.  相似文献   

15.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields.  相似文献   

17.
An analysis is given of the interaction between extremely low-frequency (ELF) electric fields and animals of arbitrary body shape. This analysis is based on three approximations which are valid in the ELF range: In living tissues, capacitive (displacement) currents are negligible compared to conduction currents; effects resulting from the finite velocity of propagation of electromagnetic fields are negligible; skin effect in living tissues is negligible. Major conclusions of the analysis are: (a) The electric field outside the body, the induced charge on the surface of the body, and the total current crossing any section through the body (eg, through the neck or limbs) are completely determined by the characteristics of the applied ELF electric field, the shape of the body, its location relative to ground and other conductors, and any conduction currents from the body to ground or other conductors. (b) All of the quantities in (a) can be measured using conducting animal models. (c) The magnitudes of the electric field outside the body and the induced charge density on the surface of the body are independent of frequency, in the ELF range, when the body is either insulated from or shorted to ground (and any other conductors in the system). (d) The only quantities affected by the electrical properties of the tissues comprising the body are the current density and electric field inside the body. (e) The electric field outside and inside a body will be unchanged by a scaled change in its size.  相似文献   

18.
Abstract

Dielectrophoresis is the motion of particles caused by electrical polarization effects in inhomogeneous (nonuniform) electric fields. Unlike electrophoresis, the particles do not require a net electrical charge for motion to occur and AC rather than DC fields are employed to exploit the dielectric properties of the particles. Factors controlling the effective dielectric properties of cells and microorganisms include electrical double layers associated with surface charges, the conductivity and permittivity of their membranes and any cell walls, and their morphologies and structural architectures. In recent years, several laboratories have developed separation and manipulation techniques for cells and microorganisms based on dielectrophoresis, using both static and traveling AC fields. In this article, the basic physical factors influencing the dielectrophoretic behavior of particles are outlined, and ways in which these can be employed to achieve selective separation of cells and microorganisms are described.  相似文献   

19.
Recent advances in electrical engineering enable the generation of ultrashort electric fields, namely nanosecond pulsed electric fields (nsPEFs). Contrary to conventional electric fields used for DNA electroporation, nsPEFs can directly reach intracellular components without membrane destruction. Although nsPEFs are now recognized as a unique tool in life sciences, the molecular mechanism of nsPEF action remains largely unclear. Here, we present evidence that nsPEFs act as a novel cellular stress. Exposure of HeLa S3 cells to nsPEFs quickly induced phosphorylation of eIF2α, activation of its upstream stress-responsive kinases, PERK and GCN2, and translational suppression. Experiments using PERK- and GCN2-knockout cells demonstrated dual contribution of PERK and GCN2 to nsPEF-induced eIF2α phosphorylation. Moreover, nsPEF exposure yielded the elevated GADD34 expression, which is known to downregulate the phosphorylated eIF2α. In addition, nsPEF exposure caused a rapid decrease in 4E-BP1 phosphorylation irrespective of the PERK/GCN2 status, suggesting participation of both eIF2α and 4E-BP1 in nsPEF-induced translational suppression. RT-PCR analysis of stress-inducible genes demonstrated that cellular responses to nsPEFs are distinct from those induced by previously known forms of cellular stress. These results provide new mechanistic insights into nsPEF action and implicate the therapeutic potential of nsPEFs for stress response-associated diseases.  相似文献   

20.
Dispersion effects in bacteriorhodopsin both in suspension and incorporated into liposomes have been studied by measuring the changes in the dielectric properties induced by electric and magnetic fields at low and medium frequencies. The samples exhibit very high values of relative permittivity and dielectric loss. Dispersions have been measured up to 200 kHz and are believed to be due to the reorientation of the bacteriorhodopsin chromophore within the membrane fragments. A study of relaxation times vs temperature shows a transition at 28°C, the same temperature as found using other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号