首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of anatoxin (ANTX), the crude extract (AlgTX) and purified fraction (F1) isolated from cyanobacterium C. raciborskii was studied on the neurones of two snail species. ANTX and AlgTX exerted excitatory, inhibitory and biphasic effects on the spontaneous activity of identified neurones. Both ANTX and AlgTX elicited an inward current, which could be decreased by curare or amiloride. On the contrary, F1 had no direct effect on the spontaneous activity; it was not able to induce conductance changes of the neuronal membrane, but it did antagonise the acetylcholine (ACh)-induced inward current. We concluded that ANTX affects the neuronal membrane of neurones acting on ACh receptors. The AlgTX had similar effects, and therefore the extract of C. raciborskii may contain an ANTX-like component. The purified fraction prolonged and decreased the ACh-elicited response, but had no direct membrane effect. We suggest, therefore, that both AlgTX and the purified fraction F1 interact with the ACh receptor, but they have different binding sites on the neuronal ACh receptor-ion channel complex. The possible neurotoxic effects of the C. raciborskii extract and F1 are demonstrated for the first time; the molecular mechanism of their action, however, remains to be elucidated.  相似文献   

2.
Ionophore A23187-mediated Ca2+-induced oscillations in the conductance of the Ca2+-sensitive K+ channels of human red cells were monitored with ion specific electrodes. The membrane potential was continuously reflected in CCCP-mediated pH changes in the buffer-free medium, changes in extracellular K+ activity were followed with a K+-selective electrode, and changes in the intracellular concentration of ionized calcium were calculated on the basis of cellular 45Ca content. An increased cellular 45Ca content at the successive minima of the oscillations where the K+ channels are closed indicates that the activation of the channels might be a (dCa2+/dt)-sensitive process and that accommodation to enhanced levels of intracellular free calcium may occur. An incipient inactivation of the K+ channels at intracellular ionized calcium levels of about 10 μM and a concurrent membrane potential of about ?65 mV was observed. At a membrane potential of about ?70 mV and an intracellular concentration of about 2·10?4M no inactivation of K+ channels took place. Inactivation of the K+ channels is suggested to be a compound function of the intracellular level of free calcium and the membrane potential. The observed sharp peak values in cellular 45Ca content support the notion that a necessary component of the oscillatory system is a Ca2+ pump operating with a significant delay in the activation/inactivation process in response to changes in cellular concentration of ionized calcium.  相似文献   

3.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

4.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

5.
Prostaglandin E release rates from isolated strips of guinea-pig taenia coli increased during exposure to zero K+ bathing fluid, from control values of 0.78 ± 0.11 ng/g per min to levels as high as 29.2 ng/per min. Release rates increased for 40–50 min and then remained constant or fell despite progressive increases in intracellular sodium [Nai+] or fall in intracellular potassium [Ki+]. Readmittance of K+ to the bathing solution resulted in rapid reversal of elevated prostaglandin E release rates. [Na+i] and [K+i] were markedly more abnormal in strips exposed to zero K+ for 70–201 min compared to 30-min exposures. Upon the readdition of K+ after long zero K+ exposure, the rate of prostaglandin E release fell long before [Na+i] and [K+i] returned to control levels. After K+ was readded to the bathing solution, the ion concentration of tissues exposed to zero K+ for 30 min returned to normal much more quickly than did those of tissues exposed for the longer time periods, yet the exponential rate constants for fall of prostaglandin E release rate after K+ was added were not significantly different after short or long zero K+ exposure. Thus there was a dissociation between the return of [Na+i] and [K+i] and the fall of prostaglandin E release rate to control levels. Ouabain augmented prostaglandin E release under conditions where [K+i] could not fall. Addition of known neurotransmitters present in this tissue to the bathing fluid did not augment prostaglandin E release. Guinea-pig taenia coli strips that had been incubated with [3H]arachidonic acid, constantly released [3H]arachidonic acid and [3H]prostaglandin E and a prostaglandin which cochromatographed with prostaglandin E but could not be converted to prostaglandin B by alkali and was shown to be 6-ketoprostaglandin F. Release of [3H]arachidonic acid and [3H]prostaglandin E plus 6-[3H]ketoprostaglandin F was increased when strips were exposed to zero K+. Data obtained in this study suggest the augmented prostaglandin E release seen during zero K+ or ouabain is related to increased availability of unbound arachidonic acid at the site of cyclooxygenase in the cell. Augmented prostaglandin E release is apparently not related to alterations in intracellular electrolyte concentrations or release of known neurotransmitters.  相似文献   

6.
We have previously demonstrated mobilization of Ca2+ in the efflux of Rb+ (K+) from isolated hamster brown adipocytes as a consequence of norepinephrine stimulation. We have now investigated the adrenoceptor subtype specificity of these responses and found them both to be of theα1-subtype. Futher, we have found that the Rb+ (K+) effux was dependent upon a primary Ca2+mobilization event in response to the α1-adrenergic stimulation, since the Rb+ efflux could also be demonstrated by the addition ionophore A23187 to the cells. The norepinephrine- and A23187-stimulated Rb+ effluxes were both inhibited by the Ca2+-dependent K+ -channel blocker apamin. Apamin also significantly attenuated Ca2+ mobilization in cells in response to a submaximal concentration of norepinephrine. We conclude that α1-adrenergic stimulation of brown fat cells leads to a mobilization of intracellular Ca2+ which, in itself or via other mechanisms, leads to an increase in cytosolic Ca2+ concentration which, in turn, activates a Ca2+ -dependent K+ channel leading to a K+ release from these cells. A possible role for this channel to sustain and augment the response toα1-adrenergic stimulation is discussed.  相似文献   

7.
The patch clamp technique was applied to protoplasts isolated from the epidermis and pericycle of Arabidopsis roots and their plasma membrane currents investigated. In the whole cell configuration, all protoplasts from the epidermis exhibited depolarization‐activated time‐dependent outwardly rectifying (OR) currents whereas OR currents were present in only 50% of cells from the pericycle. The properties of the OR currents in the epidermis and pericycle were compared with respect to their selectivity, pharmacology and gating. The time‐dependent activation kinetics, selectivity and sensitivity to extracellular tetraethyl ammonium of the OR current in each cell type were not significantly different. The reversal potential (Erev) of the OR currents indicated that they were primarily due to the movement of K+. However, the gating properties of the OR currents from the epidermis differed markedly from those exhibited in the pericycle. Although both cell types displayed OR currents with voltage‐dependent gating modulated in a potassium‐dependent fashion [i.e. the activation threshold (V0.5) was displaced to more positive voltages as extracellular K+ increased], the OR currents in the epidermis also displayed voltage‐independent gating by extracellular K+ which dramatically regulated current density. In the present study, reducing extracellular K+ activity from 40 to 0.87 mm reduced the OR current density in epidermal cells by approximately 80%. The chord conductance of the OR current saturated as a function of extracellular K+ and could be fitted with a Michaelis–Menten function to yield a binding constant (Km) of 10.5 mm . The ability of other monovalent cations to substitute for K+‐gating of the OR currents was also investigated and shown to exhibit a relative sequence of K+ ≥ Rb+ > Cs+ > Na+ ≥ Li+ (Eisenmann sequence IV) with respect to efficacy of gating. Furthermore, single channel recordings demonstrated that channel activity rather than the single channel conductance was modulated by extracellular K+. In contrast, OR current density in the pericycle was largely independent of extracellular K+. It is suggested that the contrasting gating properties of the K+ channels in the epidermis and pericycle reflect their different physiological roles, particularly with respect to their role in K+ (nutrient) transport from the soil solution to the shoot.  相似文献   

8.
At the early stage of trypsin treatment of mollusc neurones tetrodotoxin cannot block the Na+ current. In the course of further exposure of neurones to trypsin, tetrodotoxin-sensitivity is restored completely, so its temporal loss results from shielding rather than destruction of the tetrodotoxin-binding site. Pronase and papain do not affect the tetrodotoxin action on the Na+ current.  相似文献   

9.
(Na+,K+)-ATPase is able to catalyze a continuous ATP?Pi exchange in the presence of Na+ and in the absence of a transmembrane ionic gradient. At pH 7.6 the Na+ concentration required for half-maximal activity is 85 mM and at pH 5.1 it is 340 mM. In the presence of optimal Na+ concentration, the rate of exchange is maximal at pH 6.0 and varies with ADP and Pi concentration in the assay medium. ATP?Pi exchange is inhibited by K+ and by ouabain.  相似文献   

10.
Changes in fluorescence intensity of thiodicarbocyanine, DiS-C3(5), were correlated with direct microelectrode potential measurements in red blood cells from Amphiuma means and applied qualitatively to evaluate the effects of extracellular Ca2+, K+ and pH on the membrane potential of human red cells. Increasing extracellular [Ca2+] from 1.8 to 15 mM causes a K+-dependent hyperpolarization and decrease in fluorescence intensity in Amphiuma red cells. Both the hyperpolarization and fluorescence change disappear when the temperature is raised from 17 to 37°C. No change in fluorescence intensity is observed in human red cells with comparable increase in extracellular Ca2+ in the temperature range 5–37°C. Increasing the extracellular pH, however, causes human red cells to respond to an increase in extracellular Ca2+ with a significant but temporary loss in fluorescence intensity. This effect is blocked by EGTA, quinine or by increasing extracellular [K+], indicating that at elevated extracellular pH, human erythrocytes respond to an increase in extracellular Ca2+ with an opening of K+ channels and associated hyperpolarization of the plasma membrane.  相似文献   

11.
K+ induces an apparent heterogeneity among an otherwise homogeneous population of nucleotide-binding sites in (Na+ + K+)-ATPase preparations from pig kidney. With the help of ouabain we show that this heterogeneity cannot be due to a mixture of different and independent sites and conclude that each enzyme molecule must contain two nucleotide site-containing units that show interaction. Na+ induces an apparent heterogeneity among an otherwise homogeneous population of ouabain-binding sites. The argument is, therefore, extended to include one ouabain site on each of the structural units that bind nucleotide. All these structural units are shown to hydrolyse substrate at identical rates. Using the presently available molecular weight data, it is concluded that the enzyme is composed of two subunits each possessing one nucleotide-binding site, one ouabain-binding site, one α-peptide and the capacity for hydrolysing ATP and p-nitrophenyl phosphate.  相似文献   

12.
The electrical membrane properties of cultured human cytotrophoblast were examined by means of a standard electrophysiological technique. The mean values of the membrane potential (Em) and the membrane resistance in a physiological medium were around ?49 mV and 12 MΩ, respectively. The membrane potential was dependent, to a large extent, on the external Ca2+ concentration ([Ca2+]0). Deprivation of external Ca2+ reduced membrane potential to about ?20 mV, and an increase in [Ca2+]0 caused a hyperpolarization in a saturable manner. The Ca2+-dependency of membrane potential was affected remarkably by [K+]0, but not by [Na+]0 or [Cl?]0. The intracellular Ca2+ injection hyperpolarized the membrane in a Ca2+-free medium. A Ca2+ channel blocker, verapamil, completely abolished the Ca2+-dependent Em. The Ca2+-dependent Em was also suppressed by cooling or by the application of metabolic inhibitors. It is suggested that the Ca2+-dependent Em in cultured human cytotrophoblast is caused by a Ca2+ influx which, in turn, increases the K+ conductance of the cell membrane, presumably due to stimulation of Ca2+-activated K+ channel.  相似文献   

13.
The effect of l-3,5,3′-triiodothyronine (T3) and thyroxine (T4) on (Na+ + K+)-ATPase activities was examined in rabbit kidneys because in this tissue almost 80% of the metabolism is connected to active sodium transport. T3-receptor concentrations were estimated as 0.62 and 0.80 pmol/mg per DNA in the cortex and outer medulla, respectively. A dose of 0.5 mg T3/kg body weight for 3 days increased basal metabolic rate by almost 60%, and the mitochondrial 1-α-glycerophosphate dehydrogenase activity was increased by 50% in both the cortex and medulla. (Na+ + K+)-ATPase activity in the liver was raised by almost 50%. However, no changes in (Na+ + K+)-ATPase activities or binding sites for [3H]ouabain in either the kidney cortex or medulla could be observed. T4 at 16 mg/kg daily for 14 days was also without effect on renal (Na+ + K+)-ATPase activities. Furthermore, the response to T3 was absent at high sodium excretion rates induced by unilateral nephrectomy and extracellular volume expansion. Thus, despite stimulation of basal metabolic rate and renal 1-α-glycerophosphate dehydrogenase activity by T3 and T4, the (Na+ + K+)-ATPase activity in the rabbit kidney is identical in euthyroid and hyperthyroid states. However, thyroid hormones prevent the normal natriuretic response to extracellular volume expansion.  相似文献   

14.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

15.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

16.
The temperature-dependent relationship between K+ active influx, Mg2+-ATPase activity, transmembrane potential (ΔΨ) and the membrane lipid composition has been investigated in mycoplasma PG3. Native organisms were grown in a medium containing 10 μg/ml cholesterol and either oleic plus palmitic (chol (+), O + P) or elaidic (chol (+), E) acids. Adapted cells were grown in a medium free of exogenous cholesterol and supplemented with elaidic acid (chol (?), E).Arrhenius plots of 42K+ active influx gave a linear relationship for (chol (+), O + P) cells (EA = ?9 kcal). On the other hand, when oleic plus palmitic acids are replaced by elaidic acid, an upward discontinuity appears between 28 and 30°C, which is associated with a large increase in the apparent activation energy of the process (t > 30°C, EA = ?24 kcal; t < 30°C, EA = ?40 kcal).Finally, a biphasic response with a break at approx. 23°C (EA = ?7 kcal, t > 23°C; EA = ?44 kcal, t < 23°C) is observed for (chol (?), E) organisms. From the lack of correspondence between these effects on the K+ influx and the temperature dependence of both the Mg2+-ATPase activity and ΔΨ, it is suggested that changes in the membrane lipid composition affect the K+ transport at the level of the K+ carrier itself.Differential scanning calorimetry, steady-state fluorescence polarization of diphenylhexatriene and freeze-fracture electron microscopy experiments further suggest that the effect is largely due to modifications of the membrane microviscosity and that the K+ carrier is associated with the most fluid lipid species present in the membrane.  相似文献   

17.
Low concentrations of cardiac glycosides including ouabain, digoxin, and digitoxin block cancer cell growth without affecting Na+,K+-ATPase activity, but the mechanism underlying this anti-cancer effect is not fully understood. Volume-regulated anion channel (VRAC) plays an important role in cell death signaling pathway in addition to its fundamental role in the cell volume maintenance. Here, we report cardiac glycosides-induced signaling pathway mediated by the crosstalk between Na+,K+-ATPase and VRAC in human cancer cells. Submicromolar concentrations of ouabain enhanced VRAC currents concomitantly with a deceleration of cancer cell proliferation. The effects of ouabain were abrogated by a specific inhibitor of VRAC (DCPIB) and knockdown of an essential component of VRAC (LRRC8A), and they were also attenuated by the disruption of membrane microdomains or the inhibition of NADPH oxidase. Digoxin and digitoxin also showed anti-proliferative effects in cancer cells at their therapeutic concentration ranges, and these effects were blocked by DCPIB. In membrane microdomains of cancer cells, LRRC8A was found to be co-immunoprecipitated with Na+,K+-ATPase α1-isoform. These ouabain-induced effects were not observed in non-cancer cells. Therefore, cardiac glycosides were considered to interact with Na+,K+-ATPase to stimulate the production of reactive oxygen species, and they also apparently activated VRAC within membrane microdomains, thus producing anti-proliferative effects.  相似文献   

18.
短暂脑缺血可对随后的损伤性脑缺血表现出明显的耐受.有研究表明大电导Ca2+依赖K+(BKCa)通道活动增强参与了缺血性脑损伤.采用膜片钳的内面向外式,观察了3 min短暂脑缺血后6 h、24 h以及48 h大鼠海马CA1区锥体细胞上BKCa通道活动的动态变化.短暂脑缺血后BKCa通道的单通道电导和翻转电位均未见明显变化,但通道的开放概率则在缺血预处理后的前24 h内显著降低.通道动力学分析显示通道关闭时间变长是短暂脑缺血后通道活动降低的主要原因,因为通道的开放时间未发生明显变化.结果提示短暂脑缺血所致的BKCa通道活动降低可能与缺血耐受的产生有关.  相似文献   

19.
Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neocortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intracellular ATP, but also by membrane potential (Vm), and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and diversity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activation-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary conductance of about 80 pS in detail (n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane potentials. This property of the K-ATP channels may be related to their pathophysiological function. Project supported by the National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province  相似文献   

20.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the antibiotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidylserine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号