首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membrane enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

2.
Labeling and isolation of plasma membranes from corn leaf protoplasts   总被引:24,自引:19,他引:5       下载免费PDF全文
A plasma membrane-enriched fraction has been isolated from corn leaf mesophyll protoplasts and its identity confirmed with the aid of an external label, diazotized [125I]iodosulfanilic acid. Gentle cell disruption enabled internal organelles to be maintained intact and thus facilitated separation from the plasma membrane. The plasma membrane-enriched fraction was devoid of chloroplast or mitochondrial markers, whereas markers for the endoplasmic reticulum and golgi indicated minimal contamination. The highly enriched plasma membrane fraction contained a Mg2+-dependent, K+-stimulated ATPase with a pH optimum near neutrality. The position of the membranes on sucrose density gradients indicates that the plasma membranes have characteristics similar to other plasma membrane fractions.  相似文献   

3.
Procedures to isolate plasma membrane, Golgi apparatus, and endoplasmic reticulum from a single homogenate of mouse liver are described. Fractions contain low levels of contaminating membranes as determined from morphometry and analyses of marker enzymes. The method requires only 2–3 gm of liver as starting material and yields approximately 0.7, 0.7, and 0.5 mg protein/gm liver, respectively, for endoplasmic reticulum, Golgi apparatus, and plasma membrane. Golgi apparatus fractions show high levels of galactosyltransferase activity and consist of cisternal stacks and associated secretory vesicles and tubules. Endoplasmic reticulum fractions are enriched in both glucose-6-phosphatase and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-cytochrome c reductase and contain membrane vesicles with attached ribosomes. K+-stimulated p-nitrophenyl phosphatase and (Na+ K+) adenosine triphosphatase activity are enriched in the plasma membrane fraction. This fraction consists of membrane sheets, many with junctional complexes, and bile canaliculi that are representative of the total hepatocyte plasma membrane. The fractionation procedure is designed to utilize small amounts of tissue (e.g., with liver slices), to reduce the total time required for fractionation, and to permit comparisons of constituents of plasma membrane, Golgi apparatus, and endoplasmic reticulum prepared from the same starting homogenates.  相似文献   

4.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

5.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

6.
A rapid method of preparing plasma membranes from isolated fat cells is described. After homogenization of the cells, various fractions were isolated by differential centrifugation and linear gradients. Ficoll gradients were preferred because total preparation time was under 3 hr. The density of the plasma membranes was 1.14 in sucrose. The plasma membrane fraction was virtually uncontaminated by nuclei but contained 10% of the mitochondrial succinic dehydrogenase activity and 25–30% of the RNA and reduced nicotinamide adenine dinucleotide cytochrome c reductase activity of the microsomal fraction. Part of the RNA and NADH-cytochrome c reductase activity was believed to be native to the plasma membrane or to the attached endoplasmic reticulum membranes demonstrated by electron microscopy. The adenyl cyclase activity of the plasma membrane fraction was five times that of Rodbell's "ghost" preparation and retained sensitivity to epinephrine. The plasma membrane ATPase activity was five times that of the homogenate and microsomal fractions. Electron microscopic evidence suggested contamination of the plasma membrane fraction by other subcellular components to be less than the biochemical data indicated.  相似文献   

7.
A novel procedure was recently described for the purification of plasma membranes of Dictyostelium discoideum (Gilkes, N. R. & Weeks, G. (1977) Biochim. Biophys. Acta 464, 142-156). Considerable enrichment of plasma membrane marker enzymes was achieved, but since purified mitochondrial and endoplasmic reticulum fractions were unavailable, it was not possible to accurately assess the contamination level of these organelles. We have therefore slightly modified the plasma membrane preparation procedure, improving purification, and have prepared partially purified mitochondrial and endoplasmic reticulum fractions. The data suggest that the contamination of the plasma membranes by endoplasmic reticulum membranes is no greater than 10%, and probably considerably less. No mitochondrial contamination is detectable.  相似文献   

8.
The activity of cholinephosphotransferase was measured in the subcellular fractions of guinea-pig lung. The specific activity of the enzyme was highest in a fraction, intermediate in density between mitochondria and microsomes. Similar subcellular distribution patterns were observed for both cholinephosphotransferase and rotenone-insensitive NADH-cytochrome c reductase, an enzyme associated with the outer membrane of mitochondria and endoplasmic reticulum, suggesting that cholinephosphotransferase may be localized in both of these organelles. The distribution of cholinephosphotransferase activity in the subfractions of mitochondria and the intermediate fractions recovered by linear density gradient paralleled that of the mitochondrial outer membrane marker enzyme, monoamine oxidase. RNA content of a subfraction enriched in cholinephosphotransferase and monoamine oxidase was not typical to that of either rough or smooth endoplasmic reticulum. The results of this study suggest that in guinea-pig lung, cholinephosphotransferase is localized in both the outer membrane of mitochondria, and the endoplasmic reticulum.  相似文献   

9.
Plasma membrane vesicles were isolated from murine leukemic lymphoblasts L5178Y. The isolation procedure selected involved a method of mechanical disruption in a hypoosmotic-buffered solution and the separation of plasma membrane vesicles by an adaptation of the fractionation method described by D. W. McKeel and L. Jarett for fat cells (J. Cell Biol., 44, 417, 1970). In order to select the homogenization method we took into account several parameters: the extent of cell and nuclear disruption, the integrity of the nuclear membrane, the 5′-nucleotidase activity recovered at the first step of fractionation and the mitochondrial rupture. The homogenization method finally used yielded 89% of cellular rupture with only 9% of nuclear damage. The isolation procedure showed an overall yield of 70–90%. A plasma membrane fraction was isolated with an enrichment in 5′-nucleotidase and ouabain-sensitive (Na+K+)-ATPase specific activities of 15- and 13-fold, respectively, and essentially free of mitochondrial, lysosomal, and endoplasmic reticulum contamination. The electron microscopy demonstrated that the plasma membrane fraction essentially consisted of smooth vesicles of several sizes.  相似文献   

10.
A procedure is described whereby highly purified fractions of plasma membrane and tonoplast were isolated from hypocotyls of dark-grown soybean (Glycine max L. var Wayne) by the technique of preparative free-flow electrophoresis. Fractions migrating the slowest toward the anode were enriched in thick (10 nanometers) membranes identified as plasma membranes based on ability to bind N-1-naphthylphthalamic acid (NPA), glucan synthetase-II, and K+-stimulated, vanadate-inhibited Mg2+ ATPase, reaction with phosphotungstic acid at low pH on electron microscope sections, and morphological evaluations. Fractions migrating farthest toward the anode (farthest from the point of sample injection) were enriched in membrane vesicles with thick (7-9 nanometers) membranes that did not stain with phosphotungstic acid at low pH, contained a nitrate-inhibited, Cl-stimulated ATPase and had the in situ morphological characteristics of tonoplast including the presence of flocculent contents. These vesicles neither bound NPA nor contained levels of glucan synthetase II above background. Other membranous cell components such as dictyosomes (fucosyltransferase, latent nucleosidediphosphate phosphatase), endoplasmic reticulum vesicles (NADH- and NADPH- cytochrome c reductase), mitochondria (succinate-2(p-indophenyl)-3-p-nitrophenyl)-5-phenyl tetrazolium-reductase and cytochrome oxidase) and plastids (carotenoids and monogalactosyl diglyceride synthetase) were identified on the basis of appropriate marker constituents and, except for plastid thylakoids, had thin (<7 nanometers) membranes. They were located in the fractions intermediate between plasma membrane and tonoplast after free-flow electrophoretic separation and did not contaminate either the plasma membrane or the tonoplast fraction as determined from marker activities. From electron microscope morphometry (using both membrane measurements and staining with phosphotungstic acid at low pH) and analysis of marker enzymes, both plasma membrane and tonoplast fractions were estimated to be about 90% pure. Neither fraction appeared to be contaminated by the other by more than 3%.  相似文献   

11.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

12.
An investigation was conducted into the isolation of plasma membrane vesicles from primary roots of corn (Zea mays L., WF9 × M14) by sucrose density gradient centrifugation. Identification of plasma membranes in cell fractions was by specific staining with the periodic-chromic-phosphotungstic acid procedure. Plasma membrane vesicles were rich in K+-stimulated ATPase activity at pH 6.5, and equilibrated in linear gradients of sucrose at a peak density of about 1.165 g/cc. It was necessary to remove mitochondria (equilibrium density of 1.18 g/cc) from the homogenate before density gradient centrifugation to minimize mitochondrial contamination of the plasma membrane fraction. Endoplasmic reticulum (NADH-cytochrome c reductase) and Golgi apparatus (latent IDPase) had equilibrium densities in sucrose of about 1.10 g/cc and 1.12 to 1.15 g/cc, respectively. A correlation (r = 0.975) was observed between K+-stimulated ATPase activity at pH 6.5 and the content of plasma membranes in various cell fractions. ATPase activity at pH 9 and cytochrome c oxidase activity were also correlated.  相似文献   

13.
S-Adenosylhomocysteine (AdoHcy) binding to various membrane fractions of rat liver was determined at pH 7.4, using an oil centrifugation technique. The highest binding activity was found in the heavy microsomal (M-H) fraction enriched in endoplasmic reticulum, but high binding activity was also observed in the light microsomal fractions enriched in blood sinusoidal membranes (M-L fraction), and the heavy nuclear fraction (N-H fraction) containing the contiguous area. A substantial portion of AdoHcy binding activity in the M-L fraction may be ascribed to contamination of this fraction with endoplasmic reticulum, as indicated by the distribution of NADPH cytochrome c reductase activity. Binding activity was low in the light nuclear (N-L) fraction corresponding to the bile canaliculi. Phospholipid methyltransferase activity was determined in the same membrane fractions under similar conditions (pH 7.4), and in the absence and presence of added phospholipids. The distribution of the enzyme activity was dependent on the presence of exogenous phospholipids, and grossly similar to AdoHcy binding, the highest activities being observed in the M-H and the M-L fractions. The N-H fraction, rich in AdoHcy-binding activity, demonstrated, however, a very low phospholipid methyltransferase activity. It is concluded that AdoHcy-binding activity is not confined to the plasma membranes, and a major fraction of the binding activity resides on membranes derived from the endoplasmic reticulum. Also, the present results add to previous data suggesting that phospholipid methyltransferase does not totally account for the AdoHcy-binding sites on rat liver membranes.  相似文献   

14.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

15.
Basolateral plasma membranes of rat small intestinal epithelium were purified by density gradient centrifugation followed by zonal electrophoresis on density gradients. Crude basolateral membranes were obtained by centrifugation in which the marker enzyme, (Na+ + K+)-ATPase, was enriched 10-fold with respect to the initial homogenate. The major contaminant was a membrane fraction derived from smooth endoplasmic reticulum, rich in NADPH-cytochrome c reductase activity. The crude basolateral membrane preparation could be resolved into the two major components by subjecting it to zonal electrophoresis on density gradients. The result was that (Na+ + K+)-ATPase was purified 22-fold with respect to the initial homogenate. Purification with respect to mitochondria and brush border membranes was 35- and 42-fold, respectively. Resolution of (Na+ + K+)-ATPase from NADPH-cytochrome c reductase by electrophoresis was best with membrane material from adult rats between 180 and 250 g. No resolution between the two marker enzymes occurred with material from young rats of 125 to 140 g. These results demonstrate that zonal electrophoresis on density gradients, a simple and inexpensive technique, has a similar potential to free-flow electrophoresis.  相似文献   

16.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

17.
A procedure was developed for the isolation of cardiac sarcolemmal vesicles. These vesicles are enriched about ten-fold (with respect to the tissue homogenate) in K+-stimulated p-nitrophenylphosphatase, (Na+ + K+)-ATPase, 5'-nucleotidase activities and sialic acid content, all of which are believed to be components of the sarcolemma. The sarcolemma of tissue culture cardiac cells were radioiodinated and the distribution of this radioiodine paralleled the distribution of the other membrane markers above. There was very little contamination of the sarcolemmal fraction by sarcoplasmic reticulum (as judged by Ca2+-ATPase and glucose-6-phosphatase activities) or inner mitochondrial membranes (as judged by succinate dehydrogenase activity). There may, however, be some contamination by outer mitochondrial membranes (as judged by monoamine oxidase and rotenone-insensitive NADH cytochrome c reductase activities) which have rarely been monitored in cardiac sarcolemmal preparations. The purity of this preparation is good when compared with other cardiac sarcolemmal preparations. This preparation should be very useful in studying the roles of the cardiac sarcolemma (e.g. in excitation contraction coupling and Ca2+ binding).  相似文献   

18.
A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca2+ signalling and maintenance of Ca2+ homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca2+-ATPase, Na+, K+-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca2+ ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca2+ entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca2+ entry, and their formation and rebuilding have an important regulatory role in cellular Ca2+ homeostasis.  相似文献   

19.
Distribution of phytochrome (as Pfr) among membranes from soybean hypocotyls (Glycine max L. cv. Wayne) was determined by the combined techniques of cell fractionation, difference spectrometry, and electron microscopic morphometry. More than 90% of the phytochrome was found in the soluble fraction. With homogenates prepared in the presence or absence of Mg2+, the portion associated with membrane was only 6.5% and 1%, respectively. In the presence of Mg2+, the content of particulate phytochrome correlated with the amount of endoplasmic reticulum with attached ribosomes in the fractions but not with mitochondria or other membranes (including endoplasmic reticulum membranes from which the ribosomes may have been lost during cell fractionation). In the absence of Mg2+, phytochrome was associated with a “heavy” plasma membrane fraction. The phytochrome content was sufficiently low to be accounted for by a contamination of less than 10% by rough-surfaced fragments of endoplasmic reticulum. The findings show association of phytochrome with a particulate fraction enriched in rough-surfaced fragments of endoplasmic reticulum but do not rule out cosedimentation of some unknown or unspecific phytochrome aggregate with this fraction.  相似文献   

20.
Summary A procedure is described for the preparation of a membrane fraction enriched in basal-lateral plasma membranes from gastric mucosa. Gastric glands isolated from rabbit were employed as starting material, greatly reducing contamination from nonglandular cell types. The distribution of cellular components during the fractionation procedure was monitored with specific marker enzymes. (Na++K+)-ATPase, ouabain-sensitive K+-stimulatedp-nitrophenyl-phosphatase and histamine-stimulated adenylate cyclase were used as markers for basal-lateral membranes. These three markers were similarly distributed during both differential and equilibrium density gradient centrifugation. The enriched membrane fraction contained more than 30% of the total initial activities of the three basal-lateral membrane markers which were purified better than 11-fold with respect to protein. (Na++K+)-ATPase activity was resolved from the activities of acid phosphatase, pepsin, Mg2+-ATPase, cytochromec oxidase, NADPH-cytochromec reductase, glucose-6-phosphatase, (K++H+)-ATPase, DNA and RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号