首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EPR spectra at 4, 9 and 35 GHz of hydrogenase isolated from Chromatium vinosum have been compared. The spectra at 4 and 35 GHz confirmed our earlier conclusions, made from observations at 9 GHz (Albracht, S.P.J., Kalkman, M.L. and Slater, E.C. (1983) Biochim. Biophys. Acta 724, 309–316), that the irreversibly inactivated enzyme molecules in the preparation give rise to two EPR signals due to the independent non-interacting S = 12 systems of Ni(III) and a |3Fe-xS| cluster. It was observed that intact enzyme molecules show a complex EPR spectrum caused by a spin-coupled pair of Ni(III) and a |4Fe-4S|3+ cluster. The interaction energy is so weak (approx. 0.01 cm?1) that the 35 GHz spectra of both the Ni(III) and the |4Fe-4S|3+ cluster have the appearance of rather normal S = 12 spectra with additional splittings as a result of the spin-spin interaction. At lower microwave frequencies, the spectra become increasingly complex but phenomenologically they behave as expected for an exchange-coupled pair of dissimilar ions. The distance between the two spin systems is estimated to be at the most 1.2 nm. The spin-relaxation rate of the Ni(III) ion is dramatically enhanced as a result of the coupling to the rapidly relaxing Fe-S cluster. The g values and so presumably also the ligand fields of Ni in intact and irreversibly inactivated enzyme molecules are identical. This suggests that the specific coordination of the nickel in the enzyme is not the only requirement for activity with artificial electron donors or acceptors, and that the presence of a nearby, intact |4Fe-4S|3+(3+,2+) cluster might be another essential factor. From the g values and the probable function of Ni in the enzyme we propose, as a working hypothesis, that the nickel ion has five ligands provided by the protein in a square-pyramidal coordination.  相似文献   

2.
3.
Isotope substitution of 57Fe (I = 12) for 56Fe has a pronounced effect on the two EPR signals of hydrogenase of Chromatium vinosum. It is proposed that signal 1, the intensity of which is increased several-fold by a deoxygenation-oxygenation cycle with a simultaneous increase of a signal from Fe3+, is due to a [3Fe-xS] cluster. It is further proposed that signal 2 is caused by a magnetic interaction of a [4Fe-4S]3+ cluster with an unidentified paramagnet. The addition of 10 μM Ni to the culture medium (already containing 1 μM Ni) increased the enzyme activity 3–6-fold, without effect on the growth of the bacterium. Addition of 61Ni (I = 32) to the medium did not change the EPR spectrum of hydrogenase. From a comparison of the EPR signal intensities and the enzyme activities it is concluded that, in the hydrogenase preparation as isolated, molecules containing a [3Fe-xS) cluster are not active, and that active molecules have a [4Fe-4S]3+(3+,2+) cluster plus an as yet unidentified paramagnetic redox component. The latter is thought to be the primary site of interaction of the enzyme with H2. Ni is considered as a possible candidate for this component.  相似文献   

4.
 The [2Fe-2S] protein from Azotobacter vinelandii that was previously known as iron-sulfur protein I, or Shethna protein I, has been shown to be encoded by a gene belonging to the major nif gene cluster. Overexpression of this gene in Escherichia coli yielded a dimeric protein of which each subunit comprises 106 residues and contains one [2Fe-2S] cluster. The sequence of this protein is very similar to that of the [2Fe-2S] ferredoxin from Clostridium pasteurianum (2FeCpFd), and the four cysteine ligands of the [2Fe-2S] cluster occur in the same positions. The A. vinelandii protein differs from the C. pasteurianum one by the absence of the N-terminal methionine, the presence of a five-residue C-terminal extension, and a lesser number of acidic and polar residues. The UV-visible absorption and EPR spectra, as well as the redox potentials of the two proteins, are nearly identical. These data show that the A. vinelandii FeS protein I, which is therefore proposed to be designated 2FeAvFdI, is the counterpart of the [2Fe-2S] ferredoxin from C. pasteurianum. The occurrence of the 2FeAvFdI-encoding gene in the nif gene cluster, together with the previous demonstration of a specific interaction between the 2FeCpFd and the nitrogenase MoFe protein, suggest that both proteins might be involved in nitrogen fixation, with possibly similar roles. Received: 21 December 1998 / Accepted: 1 March 1999  相似文献   

5.
6.
(1) The kinetics of isotope exchange catalysed by the membrane-bound hydrogenase of Paracoccus denitrificans have been studied by measuring H2H, H2 or 2H2 produced when the enzyme catalyses the exchange between 2H2 and H2O or H2 and 2H2O. (2) In the 2H2-H2O system the measured rate of H2 production was always higher than that of H2H. The H2H2H ratio remained constant (about 1.70) in the protein concentration range 0.08–1.32 mg. The very rapid formation of H2 with respect to H2H is consistent with the hypothesis of a heterolytic cleavage of 2H2 into a deuteron and an enzyme hydride that can exchange with the solvent. (3) In the H2-2H2O system, the exchange rate was much lower than in the 2H2-H2O system, indicating a marked isotopic effect of 2H2O. (4) The H-2H exchange activity, determined from the initial velocity of H2H formation, is optimal at pH 4.5. A second maximum of activity is observed at pH 8.3. The pH value of 4.5 is also the pH optimum for H2 production while at pH 8.3–8.5 there is a maximum of H2 oxidation activity. (5) In ordinary H2O the Km for hydrogen uptake estimated either from H2 consumption or from benzyl viologen reduction was 0.06–0.07 μM for both H2 and 2H2 indicating a strong affinity of the enzyme for hydrogen at pH 8.3–8.5. Shifting from H2O to 2H2O does not affect the Km of the enzyme for H2 but lowers the Vmax value about 10-fold. The Km for benzyl viologen and methyl viologen was 0.08 and 2 mM, respectively.  相似文献   

7.
Two different hydrogenases have been isolated from Clostridium pasteurianum W5. Hydrogenase II (uptake) is active in H2 oxidation while hydrogenase I (bidirectional) is active both in H2 oxidation and evolution. Previous EPR and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I have now been complemented by analogous studies on oxidized 57Fe-enriched hydrogenase II and its CO derivative (using 12CO and 13CO). Binding of CO greatly changes the EPR spectrum of oxidized hydrogenase II, and use of 13CO leads to resolved hyperfine splitting from interaction with a single 13CO molecule (AC approximately 34 MHz). This coupling is over 50% larger than that seen for hydrogenase I. 57Fe ENDOR disclosed two types of iron site in both oxidized hydrogenase II and its CO derivative. Combination of EPR, ENDOR, and M?ssbauer results shows that site 1 has AFe1 = 18 MHz shifting to approximately 30 MHz upon CO binding and consisting of two Fe atoms and site 2 has A2 approximately 7 MHz shifting to approximately 10 MHz and containing a single Fe. These results are very similar to those seen for hydrogenase I, which indicates that a structurally similar 3Fe cluster, believed to be the catalytically active site, is present in both. Proton ENDOR shows a solvent exchangeable resonance only in the CO derivative of hydrogenase II. This indicates a structural difference between hydrogenases I and II that is brought out by CO binding. No evidence of 14N coordination to the cluster is seen for either enzyme.  相似文献   

8.
9.
In an effort to uncover the role of the high-affinity Zn(II) uptake system in uropathogenic Escherichia coli CFT073, we deleted the znuB gene, which encodes for the transmembrane component of the ZnuABC transporter system. The null mutant for znuB did not grow on minimal medium unless supplemented with excess Zn(II) (50 μM ZnCl2). In contrast, the E. coli K-12 Δ znuB cell line grew well on minimal medium that was not supplemented with Zn(II). The Δ znuB mutant was significantly deficient in the formation of biofilm under static conditions and also showed a substantially reduced migration front of swarm cells. Because motility and biofilm formation are important for E. coli CFT073 pathogenicity, we propose that the high-affinity Zn(II) uptake system may contribute to the virulence of this pathogen in the urinary tract.  相似文献   

10.
The electrochemical oxidation of anodic metal (iron, cobalt, nickel and copper) in an acetonitrile solution of the potentially chelating Schiff base N,N(dithiodiethylenebis-(aminylydenemethylydene)-bis(1,2-phenylene)ditosylamide (H2L) afforded stable complexes of empirical formula [ML]. The compounds obtained have been characterized by microanalysis, IR spectroscopy and ES-MS mass spectrometry. The crystal and molecular structures of [FeL]·CH3CN (1) [CoL]·CH3CN (2), [NiL]·CH3CN (3) and [CuL]·CH3CN (4) have been determined by X-ray diffraction in all complexes, the metal atom is in a distorted tetrahedral environment with the Schiff base acting as a tetradentate N4 donor.  相似文献   

11.
Summary No root systems in nature are without a microbial population. These may be freeliving or symbiotic.The incidence and nutrition of the freeliving microorganisms is discussed. Shortage of substrate makes it unlikely that the N-fixers in the population can fix useful amounts of N. There is a possibility that P supply is improved, but an analysis of possible processes shows them to be rather unlikely, and evidence for them to be poor. Manganese and iron uptake can be altered by microbial activity. Growth of plants can be affected by non-nutritional bacterial effects.The ecology of Rhizobium in the soil is briefly discussed, and the varying needs of different identified strains is stressed.Mycorrhizal infection of plants leads to large growth increases in appropriate conditions. This is almost always linked to increased P uptake, but zinc and copper nutrition can also be improved. The processes involved are briefly discussed. Rapid and extensive infection is important; it is very sensitive to temperature. New modelling methods are now becoming available to measure the behaviour of the fungal infections. The microorganisms require C compounds from the plant, and new measurements of this cost are discussed. The possibility of practical use of mycorrhizal fungi seem to be improving.Keynote address  相似文献   

12.
Summary The nodulation and the morphology and physiology of the nodules were studied onDatisca cannabina, a perennial herb from northern Pakistan andAlnus nitida, a nodulated tree in the same locality. Both species bear coralloid clusters of actinorhizal nodules. The main free amino acid inD. cannabina nodules was arginine while the predominant free amino acid inA. nitida nodules was citrulline. The infectivity of crushed nodules of both types of plants on their respective host was about 106 infective particles per gram of nodule fresh wt. In cross-inoculation experiments crushed nodule inoculum fromA. nitida failed to induce nodulation onD. cannabina seedlings but the crushed nodule inoculum fromD. cannabina caused low nodulation on seedlings ofA. nitida (103 infective particles. g. nodule fresh wt.).The activity of nitrogenase, hydrogenase and respiration (O2 uptake) were measured in detached nodules, nodule homogenates and the 20 m residue and 20 m filtrate preparations from the nodules of both species. Both species showed similar patterns of activities except that only the nodule homogenate and 20 m residue preparations fromD. cannabina showed pronounced enhancement of the O2 uptake by succinate which was further stimulated by ADP. This has in part been explained by the presence of mitochondria in close connection with the endophyte.  相似文献   

13.
14.
One-dimensional (1-D) helical coordination polymers, [MII(H2O)3(BPDC)]n · nH2O (M = Co (1), Fe (2)), have been prepared by the self-assembly of cobalt(II) and iron(II) ions, respectively, with 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2BPDC) in an aqueous solution. X-ray crystal structures of compounds 1 and 2 show that each metal ion displays a distorted octahedral coordination geometry including three water oxygen atoms, one oxygen atom of the carboxylate of a BPDC2− belonging to the adjacent metal ion and two nitrogen atoms from the BPDC2− acting as a chelating ligand. In 1 and 2, one carboxylate oxygen atom of coordinated BPDC2− binds to the neighboring metal ion, which give rise to 1-D helical coordination polymers. The helical chains of 1 and 2 are linked by the hydrogen bonding interactions between the carboxylate oxygen atom of the BPDC2− ion belonging to a chain and the water molecule of the adjacent helical chain, which lead to 2-D networks extending along the ab plane. The supramolecules 1 and 2 show isomorphous structures regardless of the metal ions.  相似文献   

15.
A iron(II) complex of the linear hexadentate N6 ligand H2L2-3-2, [Fe(H2L2-3-2)](ClO4)2, was synthesized and the spin crossover properties were investigated, where H2L2-3-2 denotes bis[N-(2-methylimidazol-4-yl)methylidene-2-aminoethyl]propanediamine. The complex showed a gradual and reversible one-step spin crossover (SCO) between the high-spin (S = 2) and low-spin (S = 0) states at T1/2 = 208 K without hysteresis. The crystal structures were determined at 296 and 250 K (HS state), 230, 210, and 200 K (intermediate between the HS and LS states) and 150 and 110 K (LS state). The spin transition from 296 to 150 K accompanies with the conformation change of the chelate rings at the triamine moiety and the formation of the hydrogen bond network in the same space group of orthorhombic Pbcn (no. 60). However, in the LS state at 110 K, the space group changed from orthorhombic Pbcn at 150 K (Pcan when the same axial setting to 110 K was used) to monoclinic P21/a (no. 14) at 110 K, although no spin transition and no change of assembly structure between 150 and 110 K were observed. It give us an idea that the space group transformation is mainly related to the conformational thermodynamic stability of the chelate rings at the triamine moiety and is not directly correlated with the spin transition.  相似文献   

16.
Reaction of the symmetrical proligand H2L with metal(II) acetate and a counteranion to promote crystallisation has given the homodinuclear complexes [Zn2L(OAc)2](BF4)]·2MeOH and [Ni2L(OAc)2](BF4)]·2MeOH the crystal structures of which are reported. These show the presence of a triply bridging (μ-cresolato)bis(μ-carboxylato) dimetal core.  相似文献   

17.
The title ligand, N-(2-hydroxyphenyl)methyl-bis-(2-pyridylmethyl)amine, was prepared via a condensation-reduction synthetic route. The compounds, CuCl(C19H19N3O) and [CuBr(C19H19N3O)]+Br · 3H2O, were readily synthesized from the reaction of CuCl or CuBr2 and the ligand in acetonitrile. The title copper(I) compound is an O-H ? Cl hydrogen-bonded linear chain of tetrahedrally coordinated copper centers, and the title copper(II) compound exists as two strongly tetragonally distorted dibromide bridged metal cations in a dimer with the phenol hydroxyl groups weakly bound in a trans-fashion to one of the bridging bromides. In the copper(I) complex the phenoxy group acts only as a hydrogen bond donor, whereas in the copper(II) complex it acts both as a ligand and a hydrogen bond donor.  相似文献   

18.
Four palladium(II) and platinum(II) saccharinate (sac) complexes with 2-(hydroxymethyl)pyridine (2-hmpy) and 2-(2-hydroxyethyl)pyridine (2-hepy), namely trans-[Pd(2-hmpy)2(sac)2]·H2O (1), trans-[Pt(2-hmpy)2(sac)2]·3H2O (2), trans-[Pd(2-hepy)2(sac)2] (3) and trans-[Pt(2-hepy)2(sac)2] (4), have been synthesized and characterized by elemental analysis, UV–vis, IR and NMR. Single crystal X-ray analysis reveals that the metal(II) ions in each complex are coordinated by two sac and two 2-hmpy or 2-hepy ligands with a trans arrangement. Anticancer effects of 14 were tested against four different cancer cell lines (A549 and PC3 for lung cancer, C6 for glioblastoma, and Hep3B for liver cancer). Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The mode of cell death was determined by both histological and biochemical methods. Among the metal complexes, complex 2 resulted in relatively stronger anti-growth effect in a dose-dependent manner (3.13–200 μM), compared to the others, by inducing apoptosis.  相似文献   

19.
Upon partial reduction of hydrogenase from Chromatium vinosum with ascorbate plus phenazine methosulphate, EPR signals due to Ni(III) and a [3Fe-xS] cluster appear simultaneously and with equal intensities. Since the intact enzyme shows no S = 12 signals, it is concluded that Ni(III) and a [4Fe-4S]3+ cluster interact magnetically in such a way as to prevent the detection of the two paramagnets as individual S = 12 systems. This interaction is thought to be the origin of a signal in which Fe is involved and which is not due to an S = 12 system (Albracht, S.P.J., Albrecht-Ellmer, K.J., Schmedding, D.J.M. and Slater, E.C. (1982) Biochim. Biophys. Acta 681, 330–334). A variable fraction of the enzyme preparation shows signals due to Ni(III) and a [3Fe-xS] cluster with equal intensities without any further treatment. These are thought to be derived from irreversibly inactivated enzyme molecules. The enzyme contains no selenium.  相似文献   

20.
The Pt(II) complexes of 2N1O-donor ligands containing a pendent indole, 3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-iepp), and 1-methyl-3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-miepp) (H denotes an ionizable hydrogen), were synthesized, and the structure of [Pt(tbu-iepp)Cl] (1) was determined by X-ray analysis. Complex 1 prepared in CH3CN was revealed to have the C2 atom of the indole ring bound to Pt(II) with the Pt(II)-C2 distance of 1.981(3) Å. On the other hand, [Pt(tbu-miepp)Cl] (2) was concluded to have a phenolate coordination instead of the C2 atom of the indole ring by 1H NMR spectra. Reaction of 1 with 1 equiv. of Ce(IV) in DMF gave the corresponding one-electron oxidized species, which exhibited an ESR signal at g = 2.004 and an absorption peak at 567 nm, indicating the formation of the Pt(II)-indole-π-cation radical species. The half-life, t1/2, of the radical species at −60 °C was calculated to be 43 s (kobs = 1.6 × 10−2 s−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号