首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
E.S. Canellakis  G. Akoyunoglou 《BBA》1976,440(1):163-175
Spinach chloroplasts exposed to iodide can be washed free of the bulk of the iodide. In the presence of lactoperoxidase and H2O2, iodide can be introduced into chloroplasts in high amounts and in non diffusible forms. The resultant particles, which have been named iodochloroplasts, extrude their iodide upon stimulation by light. The form and the amount of extruded iodide bears a definite relationship to the amount of incident light. A flash of marginally effective light is additive to the next such flash even after a lapse of 10 min of darkness. These and other properties of iodochloroplasts may make them of great use in the study of intermediate reactions of photosynthesis.  相似文献   

2.
An O2-evolving Photosystem II subchloroplast preparation was obtained from spinach chloroplasts, using low concentrations of digitonin and Triton X-100. The preparation showed an O2 evolution activity equivalent to 20% of the uncoupled rate of fresh broken chloroplasts, but had no significant Photosystem-I-dependent O2 uptake activity. The preparation showed a chlorophyll ab ratio of 1.9 and a P-700chlorophyll ratio of 12400. Absorption spectra at room temperature and fluorescence emission spectra of chlorophyll at 77 K suggested a significant decrease in Photosystem I antenna chlorophylls in the O2-evolving Photosystem II preparation.  相似文献   

3.
4.
We have investigated the possible relationships between the cation-induced and phenazine methosulfate (PMS)-induced fluorescence changes and their relation to light induced conformational changes of the thylakoid membrane.1. In isolated chloroplasts, PMS markedly lowers the quantum yield of chlorophyll a fluorescence (φf) when added either in the presence or the absence of dichloro-phenyldimethylurea (DCMU). In contrast, Mg2+ causes an increase in φf. However, these effects are absent in isolated chloroplasts fixed with glutaraldehyde that retain (to a large extent) the ability to pump protons, suggesting that structural alteration of the membrane—not the pH changes—is required for the observed changes in φf. The PMS triggered decrease in φf is not accompanied by any changes in the emission (spectral) characteristics of the two pigment systems, whereas room temperature emission spectra with Mg2+ and Ca2+ show that there is a relative increase of System II to System I fluorescence.2. Washing isolated chloroplasts with 0.75 mM EDTA eliminates (to a large extent) the PMS-induced quenching and Mg2+-induced increase of φf, and these effects are not recovered by the further addition of dicyclohexyl carbodiimide. It is known that washing with EDTA removes the coupling factor, and thus, it seems that the coupling factor is (indirectly) involved in conformational change of thylakoid membranes leading to fluorescence yield changes.3. In purified pigment System II particles, neither PMS nor Mg2+ causes any change in φf. Our data, taken together with those of the others, suggest that a structural modification of the thylakoid membranes (not macroscopic volume changes of the chloroplasts) containing both Photosystems I and II is necessary for the PMS-induced quenching and Mg2+-induced increase of φf. These two effects can be explained with the assumption that the PMS effect is due to an increase in the rate of internal conversion (kh), whereas the Mg2+ effect is due to a decrease in the rate of energy transfer (kt), between the two photosystems.4. From the relative ratio of φf with DCMU and DCMU plus Mg2+, we have calculated kt (the rate constant of energy transfer between Photosystems II and I to be 4.2·108 s?1, and φt (quantum yield of this transfer) to be 0.12.  相似文献   

5.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragments prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NADP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an α peak at 549 nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

6.
B. A. Diner  D. C. Mauzerall 《BBA》1971,226(2):492-497
A cell-free preparation has been isolated from Phormidium luridum that evolves oxygen when coupled to one-electron oxidants, that is insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and that yields oxygen at a rate dependent on redox potential. In this preparation the Hill oxidant couples closer to the oxygen-producing apparatus than in any other cell-free system. Light saturation curve data for the cell-free preparation shows a stabilization, by the Hill oxidant, of intermediates in oxygen synthesis. In whole cells coupled to CO2 or to K3 Fe(CN)6 no such stabilization occurs and a 2nd order light intensity dependence of the oxygen-production rate is observed.  相似文献   

7.
8.
9.
1. In the presence of Triton X-100, chloroplast membranes of the green alga Acetabularia mediterranea were disrupted into two subchloroplast fragments which differed in buoyant density. Each of these fractions had distinct and unique complements of polypeptides, indicating an almost complete separation of the two fragments.

2. One of the two subchloroplast fractions was enriched in chlorophyll b. It exhibited Photosystem II activity, was highly fluorescent and was composed of particles of approx. 50 Å diameter.

3. The light-harvesting chlorophyll-protein complex of the Photosystem II-active fraction had a molecular weight of 67 000 and contained two different subunits of 23 000 and 21 500. The molecular ratio of these two subunits was 2:1.  相似文献   


10.
G.H. Krause 《BBA》1973,292(3):715-728
Certain long-term fluorescence phenomena observed in intact leaves of higher plants and in isolated chloroplasts show a reverse relationship to light-induced absorbance changes at 535 nm (“chloroplast shrinkage”).

1. 1. In isolated chloroplasts with intact envelopes strong fluorescence quenching upon prolonged illumination with red light is accompanied by an absorbance increase. Both effects are reversed by uncoupling with cyclohexylammonium chloride.

2. 2. The fluorescence quenching is reversed in the dark with kinetics very similar to those of the dark decay of chloroplast shrinkage.

3. 3. In intact leaves under strong illumination with red light in CO2-free air a low level of variable fluorescence and a strong shrinkage response are observed. Carbon dioxide was found to increase fluorescence and to inhibit shrinkage.

4. 4. Under nitrogen, CO2 caused fluorescence quenching and shrinkage increase at low concentrations. At higher CO2 levels fluorescence was increased and shrinkage decreased.

5. 5. In the presence of CO2, the steady-state yield of fluorescence was lower under nitrogen than under air, whereas chloroplast shrinkage was stimulated in nitrogen and suppressed in air.

6. 6. These results demonstrate that the fluorescence yield does not only depend on the redox state of the quencher Q, but to a large degree also on the high-energy state of the thylakoid system associated with photophosphorylation.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea  相似文献   


11.
12.
1. Incubation of chloroplasts with HgCl2 at a molar ratio of HgCl2 to chlorophyll of about unity, induced a complete inhibition of the methyl viologen Hill reaction, as well as methyl viologen photoreduction with reduced 2,6-dichlorophenolindophenol (DCIP) as electron donor. Photooxidation of cytochrome ? was similarly sensitive towards HgCl2, whereas photooxidation of P700 was resistant to the poison. Photoreduction of cytochrome ? and light-induced increase in fluorescence yield were enhanced by the HgCl2 treatment of chloroplasts.  相似文献   

13.
D. Siefermann  H.Y. Yamamoto 《BBA》1975,387(1):149-158
1. In isolated chloroplasts of Lactuca sativa var. Manoa, the size of the violaxanthin fraction which is available for de-epoxidation is not directly dependent on electron transport but rather related to the reduced level of some electron carrier between the photosystems. This is concluded from the effects of various electrontransport conditions on violaxanthin availability: Under conditions of electron transport through both photosystems, availability was saturated at a lower electron-transport rate with actinic light at 670 than at 700 nm. Under conditions of electron transport through Photosystem I, availability was smaller for linear electron flow from reduced N-methylphenazonium methosulfate via methylviologen to oxygen than for cyclic electron flow mediated by either N-methylphenazonium methosulfate or 2,6-dichlorophenolindophenol; in addition for linear r flow from reduced N-methylphenazonium methosulfate via methylviologen to oxygen, availability increased with decreasing light intensity.2. The postulated carrier whose reduced level is related to availability seems to be some carrier between plastoquinone and the primary acceptor of Photosystem II or plastoquinone itself. This conclusion follows from the fact that availability increased with increasing light intensity under conditions of electron flow through both photosystems and that 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (≤ μM) had no effect on availability, whereas low levels of 3,3-(3′,4′-dichlorophenyl)-1,1-dimethylurea resulted in decreased availability (50% decrease at 1 μM). Furthermore, availability in 3,3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts was fully restored by 2-methyl-1,4-naphtoquinone (menadione) which mediates cyclic electron flow through plastoquinone.3. Violaxanthin availability was zero in the dark and increased in the light to a maximum of 67% of the total violaxanthin in chloroplasts. It is proposed that this variable violaxanthin availability reflects conformational changes on the internal surface of the thylakoid membrane which result in variable exposure of violaxanthin to the de-epoxidase. The fact that not all of the violaxanthin was available for de-epoxidation may indicate a heterogenous distribution of violaxanthin in the membrane.  相似文献   

14.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

15.
John Whitmarsh  R.P. Levine 《BBA》1974,368(2):199-213
We have investigated the process of intermolecular excitation energy transfer and the relative orientation of the chlorophyll molecules in the unicellular green alga Chlamydomonas reinhardi. The principal experiments involved in vivo measurements of the fluorescence polarization as a function of the exciting-light wavelength in the presence and in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We found that as the fluorescence lifetime increases upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea that the degree of fluorescence polarization decreases over the excitation region from 600 to 660 nm. This result, we argue, implies that a Förster mechanism of excitation energy transfer is involved for Photosystem II chlorophyll molecules absorbing primarily below 660 nm. We must add that our results do not exclude the possibility of a delocalized transfer process from being involved as well. Fluorescence polarization measurements using chloroplast fragments are also discussed in terms of a Förster transfer mechanism. As the excitation wavelength approaches 670 nm the fluorescence polarization is nearly constant upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.Experiments performed using either vertically or horizontally polarized exciting light show that the fluorescence polarization increases as the exciting light wavelength increases from 650 to 673 nm. This suggests the possibility that chlorophyll molecules absorbing at longer wavelengths have a higher degree of relative order. Furthermore, these studies imply that chlorophyll molecules exist in discrete groups that are characterized by different absorption maxima and by different degrees of the fluorescence polarization. In view of these results we discuss different models for the Photosystem II antenna system and energy transfer between different groups of optically distinguishable chlorophyll molecules.  相似文献   

16.
W.S. Chow  J. Barber 《BBA》1980,593(1):149-157
Salt-induced changes in thylakoid stacking and chlorophyll fluorescence do not occur with granal membranes obtained by treatment of stacked thylakoids with digitonin. In contrast to normal untreated thylakoids, digitonin prepared granal membranes remain stacked under all ionic conditions and exhibit a constant high level of chlorophyll fluorescence. However, unstacking of these granal membranes is possible if they are pretreated with either acetic anhydride or linolenic acid.Trypsin treatment of the thylakoids inhibits the salt induced chlorophyll fluorescence and stacking changes but stacking of these treated membranes does occur when the pH is lowered, with the optimum being at about pH 4.5. This type of stacking is due to charge neutralization and does not require the presence of the 2000 dalton fragment of the polypeptide associated with the chlorophyll achlorophyll b light harvesting complex and known to be lost during treatment with trypsin (Mullet, J.E. and Arntzen, C.J. (1980) Biochim. Biophys. Acta 589, 100–117).Using the method of 9-aminoacridine fluorescence quenching it is argued that the surface charge density, on a chlorophyll basis, of unstacked thylakoid membranes is intermediate between digitonin derived granal and stromal membranes, with granal having the lowest value.The results are discussed in terms of the importance of surface negative charges in controlling salt induced chlorophyll fluorescence and thylakoid stacking changes. In particular, emphasis is placed on a model involving lateral diffusion of different types of chlorophyll protein complex within the thylakoid lipid matrix.  相似文献   

17.
We report fluorescence lifetimes for in vivo chlorophyll a using a time-correlated single-photon counting technique with tunable dye laser excitation. The fluorescence decay of dark-adapted chlorella is almost exponential with a lifetime of 490 ps, which is independent of excitation from 570 nm to 640 nm.Chloroplasts show a two-component decay of 410 ps and approximately 1.4 ns, the proportion of long component depending upon the fluorescence state of the chloroplasts. The fluorescence lifetime of Photosystem I was determined to be 110 ps from measurements on fragments enriched in Photosystem I prepared from chloroplasts with digitonin.  相似文献   

18.
Akihiko Yamagishi  Sakae Katoh 《BBA》1984,765(2):118-124
The Photosystem-II reaction-center complex of the thermophilic cyanobacterium Synechococcus sp. was resolved into two complemental chlorophyll-protein complexes, CP2b which contained a chlorophyll-binding 47 kDa polypeptide, two polypeptides in the 28–31 kDa region and a 9 kDa polypeptide, and CP2c which had only a chlorophyll-binding 40 kDa polypeptide. CP2b was found to be highly active in photoreduction of 2,6-dichlorophenolindophenol with diphenylcarbazide as an electron donor. The activity was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea and ioxynil but was half inactivated by the treatment of the complex at 50°C for 5 min, or on addition of 0.001% sodium dodecyl sulfate, indicating its dependence on the protein conformation. CP2c also showed a low activity of the dye photoreduction, which was insensitive to heat and enhanced at high concentrations of sodium dodecyl sulfate. The quantum yield of the photoreduction was estimated to be 0.12 for CP2b and 0.002 for CP2c. It is concluded that the 47 kDa polypeptide is the site of the Photosystem-II reaction center and the 40 kDa polypeptide is not required for the Photosystem-II-driven electron transport.  相似文献   

19.
20.
Raymond P. Cox 《BBA》1975,387(3):588-598

1. 1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0δC is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition.

2. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in its turn was found to be superior to methanol.

3. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at −25δC in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as −40δC in 50% (v/v) ethylene glycol.

4. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as −25δC. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly.

Abbreviations: DCIP, 2,6-dichlorophenolindophenol; DAD, 2,3,5,6-tetramethyl-p-phenylenediamine; DCMU, 3(3,4-dichlorophenyl)-1,1-dimethylurea; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DMSO, dimethylsulphoxide  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号