首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of dicyclohexylcarbodiimide, a potent inhibitor of chloroplast ATPase, on the light-induced electric potential changes in intact chloroplasts of Peperomia metallica and of a hornwort Anthoceros sp. were investigated by means of glass microcapillary electrodes. The characteristics of potential changes induced by flashes or continuous light in chloroplasts of both species are similar except for the phase of potential rise in continuous light, which is clearly biphasic in Anthoceros chloroplasts. Dicyclohexylcarbodiimide at concentration 5 · 10−5 M completely abolishes the transient potential undershoot in the light-off reaction but has little effect on the peak value of the photoelectric response. The membrane conductance in the light and in the dark was tested by measuring the decay kinetics of flash-generated potential in dark-adapted and preilluminated chloroplasts. In the absence of dicyclohexylcarbodiimide, preillumination causes a significant acceleration of the potential decay. The light-induced changes in the decay kinetics of flash-induced responses were abolished in the presence of dicyclohexylcarbodiimide, whereas the rate of potential decay in dark-adapted chloroplasts was not altered by dicyclohexylcarbodiimide. The results are consistent with the notion that dicyclohexylcarbodiimide diminishes H+ conductance of energized thylakoid membranes by interacting with the H+ channel of ATPase. The occurrence of a lag (approx. 300 ms) on the plot of potential undershoot (diffusion potential) versus illumination time might suggest the increase in H+ permeability coefficient of thylakoid membrane during illumination.  相似文献   

2.
PROTONATION AND CHLOROPLAST MEMBRANE STRUCTURE   总被引:1,自引:0,他引:1       下载免费PDF全文
Light changes the structure of chloroplasts. This effect was investigated by high resolution electron microscopy, photometric methods, and chemical modification. (a) A reversible contraction of chloroplast membrane occurs upon illumination, dark titration with H+, or increasing osmolarity. These gross structural changes arise from a flattening of the thylakoids, with a corresponding decrease in the spacing between membranes. Microdensitometry showed that illumination or dark addition of H+ resulted in a 13–23% decrease in membrane thickness. Osmotically contracted chloroplasts do not show this effect. (b) Rapid glutaraldehyde fixation during actual experiments revealed that transmission changes are closely correlated with the spacing changes and therefore reflect an osmotic mechanism, whereas the light scattering changes have kinetics most similar to changes in membrane thickness or conformation. (c) Kinetic analysis of light scattering and transmission changes with the changes in fluorescence of anilinonaphthalene sulfonic acid bound to membranes revealed that fluorescence preceded light scattering or transmission changes. (d) It is concluded that the temporal sequence of events following illumination probably are protonation, changes in the environment within the membrane, change in membrane thickness, change in internal osmolarity accompanying ion movements with consequent collapse and flattening of thylakoid, change in the gross morphology of the inner chloroplast membrane system, and change in the gross morphology of whole chloroplasts.  相似文献   

3.
Photoinduced changes in the redox state of photosystem I (PSI) primary donor, chlorophyll P700 were studied by measuring differential absorbance changes of pea leaves at 810 nm minus 870 nm (ΔA 810). The kinetics of ΔA 810 induced by 5-s pulses of white light were strongly affected by preillumination. In dark-adapted leaves, the light pulse caused a transient oxidation of P700 and its subsequent reduction. An identical pulse, applied after 30-s preillumination with white light, induced sequential appearance of two peaks of P700 oxidation. These kinetic differences of ΔA 810 reflect regulatory changes of electron flow on the donor and acceptor sides of PSI induced by illumination of leaf for 20–40 s. The amplitude of ΔA 810 second peak depended nonmonotonically on the dark interval preceding illumination: it increased with the length of dark period in the range 3–10 s and decreased upon longer dark intervals. The second wave of ΔA 810 disappeared after the treatment with combination of ionophores preventing ΔpH and electric potential formation at the thylakoid membrane. In leaves treated with monensin eliminating ΔpH only, the ΔA 810 signals become incompletely reversible and were characterized by slow relaxation in darkness. The results indicate an important role of electrochemical proton gradient in generation of the second wave of light-induced P700 oxidation.  相似文献   

4.
The membrane potential changes induced by short flashes and continuous light were investigated in isolated chloroplasts of Peperomia metallica suspended in H2O- or D2O media. The potential generated in H2O-suspended chloroplasts by a single turnover flash is approximately two times lower than the maximal level of potential induced by continuous light. The photoelectric response of D2O-suspended chloroplasts differs from that of H2O-suspended chloroplasts by an increased amplitude and a prolonged phase of the potential rise. Te dark decay of the potential proceeds 2-3 times slower in the D2O-suspended chloroplasts as compared to the H2O-suspended chloroplasts. The magnitude of the flash-induced potential is somewhat lower for the chloroplasts in D2O than for the chloroplasts in the H2O medium. The results obtained suggest that the substitution of H2O for D2O results in a decrease of the ionic conductance and an increase of stability of thylakoid membranes. It was shown that the rise of electrical potential under continuous illumination proceeds in two stages. The difference kinetics of membrane potential changes are observed under conditions of separate activity of two systems of photosynthesis.  相似文献   

5.
A.A. Bulychev  W.J. Vredenberg 《BBA》1976,423(3):548-556
The kinetics of the photoelectric response induced by saturating light pulses were studied in isolated chloroplasts of Peperomia metallica as a function of K+- and Mg2+-concentrations in the medium in the absence and presence of ionophores for K+ and divalent cations. The dark decay of the potential generated in the light is found to be accelerated upon an increase in K+- or Mg2+-concentrations in the presence of valinomycin and A23187. An acceleration of the decay phase in the flash-induced response is also observed immediately after preillumination of the chloroplast. It is concluded that the dark kinetics of the potential decay after short and long light exposures are controlled by two different processes with rate constants of about 20 and 0.2 s?1, respectively.  相似文献   

6.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Nobel PS 《Plant physiology》1968,43(5):781-787
A light-induced shrinkage of chloroplasts in vivo could be detected with chloroplasts isolated within 2 minutes of harvesting pea plants. As determined both by packed volume and Coulter counter, the mean volume of chloroplasts from plants in the dark was 39 μ3, whereas it was 31 μ3 for chloroplasts from plants in the light. Upon illumination of the plants, the half-time for the chloroplast shrinkage in vivo was about 3 minutes, and the half-time for the reversal in the dark was about 5 minutes. A plant growth temperature of 20° was optimal for the volume change. The chloroplast shrinkage was half-maximal for a light intensity of 400 lux incident on the plants and was light-saturated near 2000 lux. The light-absorbing pigment responsible for the volume change was chlorophyll. This light-induced shrinkage resulted in a flattening and slight indenting of the chloroplasts. This chloroplast flattening upon illumination of the plants may accompany an increase in the photosynthetic efficiency of chloroplasts.  相似文献   

8.
Uptake of glycerate into the stroma of isolated spinach chloroplasts has been studied by silicone oil filtering centrifugation. In the dark, glycerate uptake was slow but it was increased more than five-fold by illumination of the chloroplasts. The stimulatory effect of light was reversed by uncoupling agents. By chromatography of chloroplast extracts it was demonstrated that the concentration of glycerate in the chloroplast stroma exceeded that in the surrounding medium. Glycerate uptake was dependent on temperature and pH and showed saturation kinetics. A number of weak acids inhibited glycerate uptake. It is concluded that glycerate uptake in chloroplasts is mediated by a carrier which is stimulated by illumination of the chloroplasts.  相似文献   

9.
Cytoplasmic streaming plays an important role in cell processes since it promotes solute exchange between the cytoplasm and organelles and enables lateral transport for extensive distances. The role of cyclosis in chloroplast functioning should be most conspicuous under conditions mimicking natural mosaic illumination and consequent alternation of cell regions with dominant dark and photosynthetic metabolism. Based on this assumption, we examined the light response curves and the induction kinetics of fluorescence-based parameters of chloroplast photosynthetic activity on small regions (d ∼ 100 μm) of Chara corallina Klein ex Willd. internodal cells exposed to local and overall illumination under conditions of normal cytoplasmic streaming and after suppression of cyclosis by cytochalasin B, an inhibitor of actin microfilaments. Under control conditions, the whole cell illumination caused non-photochemical quenching (NPQ) of chlorophyll fluorescence, which approached the saturation at a photon flux density of about 40 μmol/(m2 s). By contrast, illumination of a small (2 mm wide) cell part did not cause significant NPQ at light intensities up to 100 μmol/(m2 s), indicating that the chloroplast photosynthetic activity was substantially higher under conditions of localized illumination. After the inhibition of cyclosis by cytochalasin B, the light response curves were represented by nearly identical sigmoid curves, irrespective of the illumination pattern. When the cyclosis was restored in the cells washed from the inhibitor, the light response curves measured under overall and localized illumination returned to their original divergent shapes. These and other data indicate that different photosynthetic activities of chloroplasts in cells exposed to entire and partial illumination are directly related to the flow of compositionally nonuniform cytoplasm between the cell parts with prevalent photosynthetic and respiratory metabolism.  相似文献   

10.
Shigeru Itoh  Shinji Morita 《BBA》1982,682(3):413-419
(1) The relation between the membrane potential and phosphorylation was studied in chloroplasts rapidly prepared from illuminated spinach leaves (light chloroplasts) and from dark-adapted leaves (dark chloroplasts). Light chloroplasts had a higher ATP hydrolysis activity than dark chloroplasts. (2) In the presence of ADP or ATP, a rapidly decaying phase of the field-indicating 518 nm absorbance change with a half-time of 15 ms became apparent in addition to the slow phase with a half-time of more than 300 ms in either type of chloroplast. Under these conditions, light chloroplasts showed a larger rapid phase than dark chloroplasts. (3) The rapid phase was suppressed by dicyclohexylcarbodiimide and was assumed to reflect the dissipation of membrane potential due to proton movements inside the CF1-CF0 ATP synthetase. (4) A model for the proton movement in ATP synthetase is proposed.  相似文献   

11.
The kinetics of dark reduction of chlorophyll P700 oxidized by continuous light in preparations of photosystem I reaction centers from cyanobacterium Synechosystis spharoides cooled in the dark to 160 K is essentially nonexponential. The characteristic times of the components range from fractions of a second to minutes or more. During the cooling of reaction center preparations under illumination with actinic light, most of the chlorophyll P700 molecules are fixed in the oxidized state at 160 K. The kinetics of dark reduction of P700+ in the fraction of reaction centers that retain photochemical activity under these conditions is somewhat faster compared to the samples cooled in the dark. A theoretical analysis of substantial deceleration of P700+ dark recovery kinetics was done for preparations of photosystem I reaction centers oxidized by continuous light at 160 K in comparison to the experiments where reaction centers were oxidized by short single light flashes. This slowing down of the kinetics in samples excited by continuous illumination can be explained by microconformational relaxation processes related to proton shifts in the reaction center.  相似文献   

12.
The functioning of alternative routes of photosynthetic electron transport was analyzed from the kinetics of dark reduction of P700+ , an oxidized primary donor of PSI, in barley (Hordeum vulgare L.) leaves irradiated by white light of various intensities. Redox changes of P700 were monitored as absorbance changes at 830 nm using PAM 101 specialized device. Irradiation of dark-adapted leaves caused a gradual P700+ accumulation, and the steady-state level of oxidized P700 increased with intensity of actinic light. The kinetics of P700+ dark reduction after a pulse of strong actinic light, assayed from the absorbance changes at 830 nm, was fitted by a single exponential term with a halftime of 10–12 ms. Two slower components were observed in the kinetics of P700+ dark reduction after leaf irradiation by attenuated actinic light. The contribution of slow components to P700+ reduction increased with the decrease in actinic light intensity. Two slow components characterized by halftimes similar to those observed after leaf irradiation by weak white light were found in the kinetics of dark reduction of P700+ oxidized in leaves with far-red light specifically absorbed by PSI. The treatment of leaves with methyl viologen, an artificial PSI electron acceptor, significantly accelerated the accumulation of P700+ under light. At the same time, the presence of methyl viologen, which inhibits ferredoxin-dependent electron transport around PSI, did not affect three components of the kinetics of P700+ dark reduction obtained after irradiations with various actinic light intensities. It was concluded that some part of PSI reaction centers was not reduced by electron transfer from PSII under weak or moderate intensities of actinic light. In this population of PSI centers, P700+ was reduced via alternative electron transport routes. Insensitivity of the kinetics of P700+ dark reduction to methyl viologen evidences that the input of electrons to PSI from the reductants (NADPH or NADH) localized in the chloroplast stroma was effective under those light conditions.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 5–11.Original Russian Text Copyright © 2005 by Bukhov, Egorova.  相似文献   

13.
W.P. Michalski  Z. Kaniuga 《BBA》1981,635(1):25-37
1. The role of tocopherols in tomato chloroplasts from fresh, cold and dark-stored as well as stored and illuminated leaves was studied.2. The cold and dark storage of leaves results in a loss of chloroplast α- and γ-tocopherols of about 30–40% accompanied by an increase in chloroplast δ-tocopherol of about 40%. On illumination of stored leaves, an elevation of α- and γ-tocopherol level to about 110 and 95% of the control, respectively, occurs, whilst δ-tocopherol content is not affected.3. Experiments performed with 2,2-diphenyl-1-picrylhydrazyl-treated chloroplasts show that only about 70% of total α-tocopherol is functionally active in the electron transport of Photosystem II between the diphenyl-carbazide (DPC) donation site and the inhibition site of DBMIB.4. A small amount of α-tocopherol quinone (about 10% of α-tocopherol content) is found in chloroplasts from fresh, fresh and illuminated as well as cold and dark-stored tomato leaves, whereas the illumination of the latter increases the chloroplast α-tocopherol quinone content 3-fold. Moreover, following the illumination of chloroplasts from cold and dark-stored as well as stored and illuminated leaves, the oxidation of exogenous α-tocopherol to α-tocopherol quinone is 2-fold faster then in chloroplasts from fresh leaves.5. The primary product (‘α-tocopheroxide’) formed during the α-tocopherol oxidation by illuminated chloroplasts was identified as 8a-hydroxy-α-tocopheron.6. Exogenous α-tocopherol inhibits the lipid photoperoxidation by about 40–50% in chloroplasts from all three kinds of tomato leaf.7. The results seem to suggest that chloroplast α-tocopherol is involved in both electron transport of PS II and antioxidizing system of chloroplasts.  相似文献   

14.
Energization of the chloroplast thylakoid membrane causes a temporary decrease in the amplitude of the flash-induced transmembrane electrical potential as monitored by the micro-electrode technique and by the electrochromic absorbance band shift at 518 nm in chloroplasts of Peperomia metallica. This energization-dependent decrease of the flash-induced potential has a relaxation time of recovery in the dark of about 23±4 s. The phenomenon can neither be explained by a decrease of the intrinsic efficiency of photosystem I and II (PSI and PSII) nor by a partial closure of reaction centers of PSI and PSII. This leads us to propose that the energization-dependent decrease of the amplitude of the flash-induced electrical potential is caused by either the formation of a fraction of PSI and/or PSII reaction centers with fast charge recombination or by an increase of the membrane capacitance. The dark recovery after energization of the amplitude of the transmembrane electrical potential and that of non-photochemical fluorescence quenching were found to be comparable, which suggests a common cause for both phenomena.  相似文献   

15.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

16.
Pileus formation in Favolus arcularius is induced by light,but no photoinduction occurred in young epileate stipes. Thestipes usually had to attain a length of about 5 mm to be photosensitive.Synchronous pileus formation could be induced by exposure tolight using epileate stipes which had been preincubated in darknessfor 48 to 72 hr. The pileus primordium formed about 24 hr afterthe start of illumination, however, continuous illuminationwas not necessary to produce this effect. A dark period givenbetween 1 and 8 hr after the start of illumination did not retardpileus formation. The photoinduction of pileus formation involvedtwo light-requiring processes, one occurring during the firsthour (the first light process) and the other from the 8th tothe 24th hr (the second light process). The photoresponse inthe first light process was saturated with 5 lux of light, buta light intensity below 1 lux was essentially ineffective. Onthe other hand, the reaction in the second light process couldbe started by less than 2 lux, and was accelerated by increasingthe light intensities up to about 150 lux. Further increasesin light intensity did not improve any significant effect. (Received April 30, 1974; )  相似文献   

17.
Evidence is presented for low rates of carriermediated uptake of sulphate, thiosulphate and sulphite into the stroma of the C3 plant Spinacia oleracea. Uptake of sulphate in the dark was followed using two techniques (1) uptake of sulphate [35S] as determined by silicon oil centrifugal filtration and (2) uptake as indicated by inhibition of CO2-dependant O2 evolution rates after addition of sulphate.Sulphate, thiosulphate and sulphite were transported across the envelope leading to an accumulation in the chloroplasts. Sulphate transport had saturation kinetics of the Michaelis-Menten type (Vmax : 25 μmoles . mg−1 chl . h−1 at 22°C ; Km : 2.5 mM). The rate of transport for sulphate was not influenced either by illumination or pH change in the external medium. Phosphate was a competitive inhibitor of sulphate uptake by chloroplasts (Ki : 0.7 mM, fig. 1). The rate of transport for phosphate appeared to be much higher than for sulphate. When the chloroplasts were pre-loaded with labelled sulphate, radioactivity was rapidly released after addition of phosphate into the external medium. Consequently, the transport of sulphate occurs by a strict counter-exchange : for each molecule of sulphate entering the chloroplast, one molecule of phosphate leaves the stroma, and vice-versa.The uptake of sulphate by isolated intact chloroplasts exchanging for internal free phosphate induced a lower rate of photophosphorylation, which in turn inhibited CO2-dependent O2 evolution.The presence, on the inner membrane of the chloroplast envelope, of a specific sulphate carrier, distinct from the phosphate translocator, is discussed.  相似文献   

18.
Capillary microelectrodes and pulse amplitude-modulated microfluorometry were used to study light-triggered changes in cell membrane potential, chlorophyll fluorescence, and photochemical yield of PSII in chloroplasts of a hornwort Anthoceros sp. The action potential was generated by illuminating the plant sample for a few seconds. It was accompanied by a reversible decrease in quantum efficiency of PSII and by nonphotochemical quenching of fluorescence that continued as long as 10 min after the light stimulus. The presence of ammonium ions (2 mM) enhanced the amplitude and prolonged the duration of dark changes of fluorescence parameters in accordance with the reported increase in duration and amplitude of the light-triggered action potential in the presence of NH 4 + . A rapid retardation of PSII activity within the first seconds of illumination was also evident from absorbance changes at 810 nm reflecting the redox conversions of chlorophyll P700. The PSII-dependent stage of reduction in the induction curves of P700 absorbance was strongly suppressed, and the amplitudes of signals induced by white and far-red light (717 nm) differed insignificantly. It is concluded that a short-term irradiation triggers the generation of ΔpH at the thylakoid membranes, which is accompanied by inhibition of the plasma membrane H+ pump and by reversible inactivation of PSII due to increased thermal dissipation of chlorophyll excitations.  相似文献   

19.
A lipophilic nitroxyl radical, 1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl 1-adamantylacetate, has been applied to EPR spin probe study of chloroplasts and subchloroplast fragments of different types. The latter originate from grana and the grana core regions. The binding of the spin probe to the membranes was revealed by specific changes in a shape of the EPR spectra. A share of membrane-bound spin probe was different for chloroplasts and subchloroplast fragments, as well as its rotational correlation time and apparent enthalpy and entropy activation of nitroxide rotational motion. The binding of the spin probe induced a significant decrease in the amount of the oxidized P700 and changes in the kinetics of its light oxidation and dark recovery. This suggests that one of the sites of nitroxyl radical binding is the nearest surrounding of the pigment-protein complexes of Photosystem I (PSI). Distinctions in mobility of spin probe immobilized by chloroplasts and their fragments can be caused by the different environment of the PSI complexes located in various regions of thylakoid membranes. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 5, pp. 690–698.  相似文献   

20.
1. Using single chloroplasts of Peperomia metallica the kinetics of light-induced potential changes were studied. Three kinetic components (the initial fast rise, the decay in the light and the decay in the dark) were found to be characterized by time constants 4, 220 and 60 ms, respectively at light intensity 5000 lx and temperature 18 °C. After flash excitation the potential kept on rising for about 10 ms. Cooling of the medium down to 5 °C had no effect on the duration of potential rise after the flash.2. Variations in the medium temperature in the range 2–23 °C had little effect on photoresponse magnitude but resulted in significant acceleration of decay in the light.3. Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5 · 10?6 M) resulted in suppression of the magnitude of the photoresponse but was not accompanied by any change in the rate of initial rise of potential. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea-inhibited photoresponse could be restored and even enhanced by subsequent addition of N-methylphenazonium methosulfate (10?4 M). N-Methylphenazonium methosulfate essentially influenced the time course and light-intensity curves of photoresponse.4. The chloroplast photoresponses were of different time-courses when elicited by red (640 nm) or far red (712 nm) light. This fact as well as an enhancement effect of combined illumination by two intermittent light beams indicate on the interaction of two photosynthetic pigment systems when the photoelectric response was formed.5. An imposed electrical field resulted in stimulation or suppression of chloroplast photoresponse depending on the polarity of the field. No indications for the existance of “reversal potential” for photoelectric response were obtained.6. A kinetic scheme of photoresponse formation is proposed, which includes two sequential photochemical reactions of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号