首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the solid to liquid-crystalline phase transition of sonicated vesicles of dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylcholine. The transition was studied by both fluorescence polarization of perylene embedded in the vesicles, and by the efflux rate of trapped 22Na+.Fluorescence polarization generally decreases with temperature, showing an inflection in the region 32–42°C with a mid-point of approximately 37.5 °C. On the other hand, the perylene fluorescence intensity increases abruptly in this region. To explain this result, we have proposed that, for T < Tc where Tc is the transition temperature, perylene is excluded from the hydrocarbon interior of the membranes, whereas, T < Tc this probe may be accommodated in the membrane interior to a large extent.The self-diffusion rates of 22Na+ through dipalmitoylphosphatidylglycerol vesicles exhibit a complex dependence on temperature. There is an initial large increase in diffusion rates (approximately 100-fold) between 30 and 38 °C, followed by a decrease (approximately 4-fold) between 38 and 48 °C. A monotonic increase is then observed at temperatures higher than 48 °C. The local maximum of 22Na+ self-diffusion rates at approximately 38 °C coincides with the mid-point of phase transition as detected by changes in fluorescence polarization of perylene with the same vesicles. Vesicles composed of dipalmitoylphosphatidylcholine show the same general behavior in terms of 22Na+ self-diffusion rates at different temperatures, except that the local maximum occurs at approximately 42 °C.The temperature dependence of the permeability and the appearance of a local maximum at the phase transition region could be explained in terms of a domain structure within the plane of the membranes. This explanation is based on the possibility that boundary regions between liquid and solid domains would exhibit relatively high permeability to 22Na+.Mixed vesicles composed of equimolar amounts of dipalmitoyl phospholipids and cholesterol show no abrupt changes in the temperature dependence of either perylene fluorescence polarization or 22Na+ diffusion rate measurements. This is taken to indicate the absence of agross phase transition in the presence of cholesterol.  相似文献   

2.
Acid dissociation constants of aqueous cyclohexaamylose (6-Cy) and cycloheptaamylose (7-Cy) have been determined at 10–47 and 25–55°C, respectively, by pH potentiometry. Standard enthalpies and entropies of dissociation derived from the temperature dependences of these pKa's are ΔH0 = 8.4 ± 0.3 kcal mol?1, ΔS0 = ?28. ± 1 cal mol?10K?1 for 6-Cy and ΔH0 = 10.0 ± 0.1 kcal mol?1, ΔS0 = ?22.4 ±0.3 cal mol?10K?1 for 7-Cy. Intrinsic 13C nmr resonance displacements of anionic 6- and 7-Cy were measured at 30°C in 5% D2O (vv). These results indicate that the dissociation of 6- and 7-Cy involves both C2 and C3 20-hydroxyl groups. The thermodynamic and nmr parameters are discussed in terms of interglucosyl hydrogen bonding.  相似文献   

3.
The initial rate of concanavalin A-mediated agglutination of polyoma transformed Baby Hamster Kidney (pyBHK) cells follows Arrhenius kinetics. There is a smooth decrease in the agglutination rate from 37°C to 22°C with an activation energy of 11.8 ± 0.2 kcal/mol in this region. There is a sharp decrease in agglutination rate below 22°C. The addition of 0.1 mM 1,3-di-tert-2-hydroxyl-5-methylbenzene, a lipid perturber, increases the agglutination rate by a factor of two and increases the membrane lipid fluidity as determined by the spin label method. The rotational correlation time of the spin label 2N14 (2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide) was measured. The sum of the enthalpy of activation of rotational diffusion and the enthalpy of activation of translational diffusion is very nearly equal to the enthalpy of activation of agglutination. This is consistent with the rate limiting step of agglutination being receptor diffusion, which is probably limited in pyBHK cells by membrane lipid fluidity.  相似文献   

4.
The enthalpy of the helix-coil conversion of phenylalaninespecific transfer ribonucleic acid from brewer's yeast (tRNAPhebrewer's yeast) has been measured using both an LKB 10700-2 batch miciocalorimeter and an adiabatic differential scanning calorimeter. In the mixing calorimeter the conversion from coil to helix was induced by mixing a tRNAPhe solution with a solution containing an excess of MgSO4. We measured the enthalpy of this reaction stepwise in the temperature range from +9 to +60° C. For the enthalpy of folding of tRNAPhe from coil to helix this method yielded the remarkably high value of ?310 kcalmole of tRNAPhe. With the differential scanning calorimeter in which the helix-coil conversion is simply induced by raising the temperature we found a value of +240 kcalmole of tRNAPhe at a Tm value of 76° C and a value of +200 kcalmole of tRNAPhe at a Tm value of 50° C. A comparison of the apparent van't Hoff enthalpies with the calorimetrically measured enthalpies shows, that the cooperativity of the system increases continually with rising melting temperatures - which are achieved by increasing Mg2+ concentrations - reaching a constant value at about 57° C. Above this temperature value the thermodynamic behaviour of the helix-coil conversion of tRNAPhe may be approximately described by the model of an all-or-none process.  相似文献   

5.
The association constant for the interaction of daunomycin with DNA was determined as a function of temperature (using [3H] daunomycin in conventional equilibrium dialysis cells) and ionic strength (using a spectrophotometric titration method). The association constant varied between 3.1 × 106 M?1 (4°C) and 3.9 × 105 M?1 (65°C). The free energy change was ?8.2 to ?8.8 kcalmol, the enthalpy change ?5.3 kcalmol and the entropy change +10 to +11 eu, all values being consistent with that expected of an intercalation process. The apparent number of intercalation sites detected (0.15 to 0.16 per nucleotide) was independent of temperature. The large positive entropy change accompanying the interaction appeals to be due to extensive release of water from the DNA and daunomycin. The apparent number of binding sites increased dramatically with decrease of ionic strength, although the apparent association constant remained largely unaffected by ionic strength.  相似文献   

6.
The irreversible thermal denaturation of cytochrome cd1 oxidase from P.aeruginosa as a function of the oxidation-reduction states of its hemes was observed with a differential scanning calorimeter. Upon full reduction of the four hemes, the apparent denaturation temperature decreases by about 10° and the denaturation enthalpy decreases slightly: oxidized, 5.9 cal/gm; reduced, 5.4 cal/gm. At pH 7.5, the first order rate constants for denaturation at 90°C are: reduced, 33 × 10?3s?1; oxidized, 3 × 10?3s?1. Thus, oxidation of the hemes reuults in heat stabilization of the cytochrome oxidase. The activation energy for denaturation of fully reduced oxidase, 53 kcal/mol, is less than that for fully oxidized protein (73 kcal/mol).  相似文献   

7.
The enthalpy change for the oxidative deamination of glutamate by NADP+ catalyzed by bovine liver glutamate dehydrogenase has been determined calorimetrically. The ΔHo values are 64.6 ± 1.2 kJmol and 70.3 ± 1.2 kJmol at 25 and 35°C respectively. The equilibrium constants for the reaction at the two temperatures were determined spectrophotometrically. This enabled the determination of ΔGo and ΔSo of the reaction as well. ΔHovalues were also determined for the reaction using an alternative coenzyme and the deuterated substrate.  相似文献   

8.
The transport of 3-O-methylglucose in white fat cells was measured under equilibrium exchange conditions at 3-O-methylglucose concentrations up to 50 mM with a previously described method (Vinten, J., Gliemann, J. and Østerlind, K. (1976) J. Biol. Chem. 251, 794–800). Under these conditions the main part of the transport was inhibitable by cytochalasin B. The inhibition was found to be of competitive type with an inhibition constant of about 2.5 · 10?7 M, both in the absence and in the presence of insulin (1μM). The cytochalasin B-insensitive part of the 3-O-methylglucose permeability was about 2 · 10?9 cm · s?1, and was not affected by insulin. As calculated from the maximum transport capacity, the half saturation constant and the volume/ surface ratio, the maximum permeability of the fat cell membrane to 3-O-methylglucose at 37°C and in the presence of insulin was 4.3 · 10?6 cm · s?1. From the temperature dependence of the maximum transport capacity in the interval 18–37°C and in the presence of insulin, an Arrhenius activation energy of 14.8 ± 0.44 kcal/mol was found. The corresponding value was 13.9 ± 0.89 in the absence of insulin. The half saturating concentration of 3-O-methylglucose was about 6 mM in the temperature interval used, and it was not affected by insulin, although this hormone increased the maximum transport capacity about ten-fold to 1.7 mmol · s?1 per 1 intracellular water at 37°C.  相似文献   

9.
Infrared spectra were obtained as a function of temperature for a variety of phospholipid/water bilayer assemblies (80% water by weight) in the 3000-950 cm?1 region. Spectral band-maximum frequency parameters were defined for the 2900 cm?1 hydrocarbon chain methylene symmetric and asymmetric stretching vibrations. Temperature shifts for these band-maximum frequencies provided convenient probes for monitoring the phase transition behavior of both multilamellar liposomes and small diameter single-shell vesiclesof dipalmitoyl phosphatidylcholine/water dispersions. As examples of the effects of bilayer lipid/cholesterol/water (3 : 1 mol ratio) and lipid/cholesterol/amphotericin B/water (3 : 1 : 0.1 mol ratios) vesicles were examined using the methylene stretching frequency indices. In comparison to the pure vesicle form, the transition width of the lipid/cholesterol system increased by nearly a factor of two (to 8°C) while the phase transition temperature remained approximately the same (41° C). For the lipid/cholesterol/amphotericin B system, the phase transition temperature increased by about 4.5° C (to 45.5°C) with the transition width increasing by nearly a factor of four (to ≈ 15°C) above that of the pure vesicles. The lipid/cholesterol/amphotericin B data were interpreted as reflecting the formation below 38°C of a cholesterol/amphotericin B complex whose dissociation at higher temperature (38–60°C range) significantly broades the gel-liquid crystalline phase transition.  相似文献   

10.
11.
An aqueous dispersion of fully hydrated bovine sphingomyelin was studied using 14N-NMR spectroscopy. Spectra were obtained as a function of temperature over the range 15–80°C, in both the liquid crystal and gel phases. In the liquid crystal phase, powder pattern lineshapes were obtained, whose quadrupolar splitting slowly decreases with increasing temperature. The spectra are increasingly broadened as the temperature is lowered through the phase transition into the gel phase. The linewidths and the second moments of these spectra indicate that the onset of a broad phase transition occurs at approx. 35°C, in agreement with previous calorimetric and 31P-NMR measurements. There is no evidence from the lineshapes for an hexagonal phase in this system, and this conclusion is supported by X-ray diffraction measurements carried out on aqueous dispersions of sphingomyelin in both phases. Assuming that the static nitrogen quadrupole coupling constant is the same for both sphingomyelin and dipalmitoyl-l-α-phosphatidylcholine (DPPC), the decrease observed in the quadrupolar splitting of sphingomyelin compared to that of DPPC indicates that the orientational order of the choline headgroup in liquid crystalline sphingomyelin is not the same as that of its counterpart in DPPC. Preliminary relaxation time measurements of T1 and T2 are presented which suggest that there are also dynamic differences between sphingomyelin and DPPC in the choline headgroup.  相似文献   

12.
Synthesis and phase transition characteristics of aqueous dispersions of the homologous (12 : 0, 14 : 0, 16 : 0) diphosphatidylglycerols (cardiolipins) and phosphatidyldiacylglycerols are reported. Electron microscopy of the negatively stained aqueous dispersions reveals a characteristic lamellar structure suggesting that these phospholipid molecules are organized as bilayers in the aqueous dispersions. The phase transition temperature (Tm) and the enthalpy of transition (ΔH) increase monotonically with chain length in the cardiolipin and phosphatidyldiacylglycerol series; Tm for phosphatidyldiacylglycerol is higher than that for cardiolipin of the same chain-length. The transition temperatures for the enantiomeric sn-3,3- and sn-1,1-phosphatidyldiacylglycerol and for the diastereomeric, meso-sn-1,3-phosphatidyldiacylglycerol are approximately the same. The molar enthalpy for the transition of cardiolipin-NH4+ bilayers is approximately twice the value for the phosphatidylcholines of the same chain length, i.e., the molar enthalpy per acyl chain is approximately the same in the two systems. The transition temperatures for metal ion salts of C1 6-cardiolipin exhibit a biphasic dependence upon the unhydrated ionic radii, i.e. the highest Tm is observed for Ca2+- cardiolipin and decreases for the salts of ions with smaller and larger ionic radii than that of Ca2+. The lowest Tm is observed for Rb+-cardiolipin. Monovalent metal salts of cardiolipin exhibit two phase transitions. This effect may result from different conformational packing of the four acyl chains due to differences in metal-phosphate binding.  相似文献   

13.
An increase in temperature from 20 to 50° C results in the complete transition from the Z to B form of poly(d(G-C)], dissolved in a 55% ethanol-water solution. The transition is fully reversible and displays a slow kinetics. The transition profiles for the free polynucleotide and for that in the presence of ethidium bromide, which is known to stabilize the B form, are obtained by circular dichroism. Based on these data the enthalpy value for the B-Z transition in our conditions is estimated to be ΔHBZ = ?0.7 kcalmol.  相似文献   

14.
The thermodynamics of the hairpin helix-single strand transition of A6C6U6 has been analyzed by a staggering zipper model with consideration of single strand stacking. This analysis yields an enthalpy change of +11 kcal/mole for the formation of a first, isolated base pair. The stability constant of a first (intramolecular) base pair in A6C6U6 is around 2 × 1O?5 at 25°C, whereas a first (intermoleciilar) base pair in an A6 · U6 helix is characterised by a stability constant of about 4 × 10?3M?1 (25°C, extrapolated from An · Vn oligomer measurements). These data indicate a destabilizing effect of the C6 loop.The rate constant of hairpin helix formation is 2 to 3 × 104 sec?1 associated with an activation enthalpy of +2.5 kcal/mote. The rate of helix dissociation of the A6C6U6 hairpin is in the range of 103 to lO5 sec?1 with an activation enthalpy of 21 kcalmole. A comparison with the kinetic parameters obtained for A · U oligomer helices shows a specific influence of the C6 loop due to the stacking tendency of the cytosine residues. This intluence is preferentially reflected in the relatively low value of the rate constant of helix formation.  相似文献   

15.
The kinetics of the sodium binding to the ionophore monensin (Mon) in methanol has been studied by 23Na NMR spectroscopy. Fast quadrupole relaxation of the bound sodium affected the relaxation rate of the free sodium through an exchange process between these two species. The exchange was found to be dominated by the reaction: Na+ + Mon? ? MonNa. The dissociation rate constant at 25°C is 63 s?1, with an activation enthalpy of 10.3 kcalmol and activation entropy of ?15.8 calmol deg. These results indicate that the specificity of the binding of sodium ions to monensin is reflected in the relatively slow dissociation process. The entropy changes indicate that the activated monensin-sodium complex undergoes a conformational change, but the existence of a conformational change in monensin anion prior to complexation is excluded.  相似文献   

16.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

17.
The application of isothermal calorimetry to the study of self-association reactions between identical protein subunits has been explored to assess the types of information obtainable from heat of dilution curves (i.e., the molar heat of dilution as a function of total solute concentration). Relationships between the heat of dilution, subunit association constants, and enthalpies of formation for the various association complexes in a self-associating system have been formulated. A method is described for constructing heat of dilution curves from sequential step-wise dilution experiments in a batch-type calorimeter. The relationship between calorimetric and van't Hoff enthalpies is formulated for systems undergoing self-association reactions. Comparison between the two is shown by numerical simulation to provide a very sensitive test for the presence of intermediate species.Calorimetric measurements were made on the self-association of β?lactoglobulin-A at 5.0 °C, pH 4.65, in 0.1 m NaCl and in 0.1 m acetate. Heat of dilution curves constructed from these data were used to estimate the equilibrium constant and enthalpy of formation, assuming a monomer-tetramer association process. Values of 31 ± 4 kcal/mole tetramer for the enthalpy and 1.3 ± 1.0 × 1011 liter3/mole3 for the constant of tetramerization were determined from the calorimetric measurements in NaCl. The corresponding values for calorimetric measurements in acetate were 33 ± 4 kcal/mole and 1.6 ± 1.0 × 1011 liter3/mole3.The calorimetric results were compared with thermodynamic information obtained from association data between 5 and 25 °C in 0.1 m acetate using molecular sieve chromatography. Within experimental error, the molecular sieve data at 5 °C could be fit to a monomer-tetramer association reaction with a monomer molecular weight of 36,000. From these studies a van't Hoff enthalpy of 38 ± 4 kcal/mole tetramer and an equilibrium constant of 4.6 ± 1.0 × 1011 liter3 mole3 at 5 °C were obtained. Comparison between calorimetric and van't Hoff enthalpies indicates that the self-association of β-lactoglobulin-A under these conditions can be adequately described by a monomer-tetramer reaction. The results suggest that, a small fraction (e.g., 5–10%) of species having intermediate states of aggregation may be present, but preclude the presence of large fractions of intermediate species having appreciable enthalpies of association.  相似文献   

18.
31P-NMR is used to characterize the phase behavior of phosphonolipids in both model and biological membranes. (1′,2′-Dipalmitoyl-sn-glyceryl)-2-aminoethylphosphonate gives rise to static chemical shift tensor elements (?87, 5 and 63 ppm) which differ considerably from those reported for the analogous phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (?81, ?20 and 105 ppm). Phosphonolipid, as well as a mixture of phosphonolipid and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, in aqueous dispersion gives rise to 31P spectra which may be interpreted in terms of lamellar structures. A mixture of phosphonolipid and egg phosphatidylethanolamine exhibits a bilayer-to-hexagonal phase transition with a concomitant decrease by one-half in the value of the 31P chemical shift anisotropies of both the phosphonate and phosphate resonances. The chemical shift anisotropy associated with phosphonolipid has been found to be consistently smaller than that observed for the analogous phospholipid. 31P-NMR spectra of total lipid extracts of Tetrahymena sp. indicate that both phospho- and phosphonolipids have a bilayer organization between ?20 and 20°C.  相似文献   

19.
The mixing of various molecular species of phosphatidylglycerol and phosphatidylcholine differing in their acyl chain lengths has been studied both in monolayers (π, ΔV), and in water dispersions (fluorescence polarization) with varying pH and ionic strength of the aqueous phase and in the presence of the divalent cations Mg2+ and Ca2+. In dilauroylphosphatidylglycerol/dipalmitoylphosphatidylcholine mixtures, both in monolayers and in water dispersions, no phase separation was detected at pH 2.9 where phosphatidylglycerol was protonated. With dipalmitoylphosphatidylglycerol/dipalmitoylphosphatidylcholine mixtures, in monolayers and at the same pH, no phase separation was detected for surface pressures below π = 40 mN · m?1. In monolayers, and under ionic conditions such that phosphatidylglycerol was ionized (pH 5.6, 10 mM NaCl) miscibility was observed with dilauroylphosphatidylglycerol and dipalmitoylphosphatidylcholine and also with dipalmitoylphosphatidylglycerol and dilauroylphosphatidylcholine. Varying the ionic strength did not alter the miscibility of these lipids. The divalent cations Mg2+ and Ca2+ did not modify that of dilauroylphosphatidylglycerol with dilauroylphosphatidylcholine or with dipalmitoylphosphatidylcholine. Both in monolayers and in water dispersions, dipalmitoylphosphatidylglycerol and dilauroylphosphatidylcholine appeared to be at least partly miscible, in the presence of magnesium. Only in the presence of calcium and at high surface pressure might the monolayer data account for phase separation between these two lipids. The data presented demonstrate the existence of strong cohesive forces between phosphatidylcholine and phosphatidylglycerol with a marked influence of the former on the physical state of the latter. From an analysis of the ΔV data, it is suggested that intrafacial hydrogen bonds may play a significant role in stabilizing phosphatidylcholine/phosphatidylglycerol mixtures.  相似文献   

20.
General equations relating fluorescence quantum yield and lifetime of a compound with its intramolecular stacking equilibrium and kinetics were derived. Intramolecular stacking association of 9,9'-[1,3-propylene]-bis-2-aminopurine in aqueous solution was examined within the range of temperatures from 0 to 90°C. A two-state thermodynamic model of the association was verified. The stacking enthalpy and entropy can be taken, with a good approximation, as temperature-independent (δH = ?2.0 kcalmol, ΔS = ?3.25 e.u.) although the function ΔG = ?0.00886 T2 + 8.847 T ?2876 describes more precisely the observed changes of stacking free enthalpy with temperature. The association rate constants were determined. Activation energy of the reaction (2 kcalmol) is the same as in the case of association between free 2-aminopurine molecules. It confirms a two-step mechanism of the process. The advantages and shortcomings of the fluorescence quenching method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号