首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》1985,810(1):73-83
Studies on monomolecular layers of phospholipids containing the antenna protein B800–850 (LHCP) and in some cases additionally the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides are reported. Information on monolayer preparation as well as on protein/lipid and protein/protein interaction is obtained by means of fluorescence spectroscopy and microscopy at the air/water interface in combination with film balance experiments. It is shown that a homogeneous distribution of functional proteins can be achieved. This can be transformed into a regular pattern-like distribution by inducing a phospholipid phase transition. Although the LHCP preferentially partitions into the fluid lipid phase, it decreases the lateral pressure necessary to crystallize the lipid. This is probably due to an increase in order of the fluid phase. A pressure-induced conformation change of the LHCP is detected via a drastic change in fluorescence yield. A highly efficient energy transfer from LHCP to the reaction center is observed. This proves the quantitative reconstitution of both types of proteins and indicates protein aggregation also in the monolayer.  相似文献   

2.
The absorbance, polarized absorbance and linear dichroism spectra of single crystals of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050 taken at room (298 K) and low (85 K) temperatures are presented. The spectra are compared and contrasted with random phase solution spectra from the same complex. The single crystal spectra display a spectral narrowing at low temperatures in the BChl Qx (550–650 nm) and carotenoid (450–550 nm) regions similar to that observed from the random phase solution. The single crystal absorption spectra in the BChl Qy (750–900 nm) region are broader than the solution spectra and remain broad as the temperature is lowered. It is suggested that this broadening is the result of specific exciton interactions between the BChl chromophore Qy transition dipoles and is a molecular feature which occurs only in the crystalline complex.  相似文献   

3.
The biosynthesis of δ-aminolevulinic acid was investigated in three strains of Rhodopseudomonas sphaeroides. A wild-type strain (NCIB 8253) possessed both δ-aminolevulinic acid synthetase and γ,δ-dioxovaleric acid transaminase in the cytoplasmic and membrane cell fractions. δ-Aminolevulinic acid synthetase activities were not detected in extracts of mutant strains H5 and H5D. However, γ,δ-dioxovaleric acid transaminase was found in the cytoplasmic and membrane fractions of these latter two strains. Strain H5 required exogenously added δ-aminolevulinic acid for growth and bacteriochlorophyll synthesis. Strain H5D did not require this compound for growth and bacteriochlorophyll synthesis. γ,δ-Dioxovaleric acid added in the growth medium did not support the growth of H5, although it was actively transported into the cells. Addition of γ,δ-dioxovaleric acid to the growth medium did not enhance the growth of either the wild-type or H5D strains. These results indicate that ALA synthetase is not required for growth and bacteriochlorophyll synthesis in H5D and that γ,δ-dioxovaleric acid is probably not an intermediate in the formation of δ-aminolevulinic acid in the strains of Rhodopseudomonas sphaeroides studied. In strain H5D another pathway may function in the formation of δ-aminolevulinic acid other than that catalyzed by δ-aminolevulinic acid synthetase or γ,δ-dioxovaleric acid transaminase.  相似文献   

4.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

5.
Strongly bounded associates of B800–850 (LH2) and B800–830 (LH3) complexes from photosynthetic purple bacterium Thiorhodospira sibirica were investigated. It was shown that associates contain 8–10 complexes (LH2:LH3 ≈ 1:1). Absorption spectra of the monomer LH2 and the monomer LH3 complexes were calculated. Excitation of B800 absorption band of associates results in: (i) intracomplex excitation energy transfer from B800 to B830 or B850 with time constant of about 500 fs; (ii) intercomplex excitation energy transfer from B820 band of LH3 complex to B850 band of LH2 complex with time constant of about 2.5 ps; (iii) excitation deactivation in B850 band of LH2 complex with time constant of about 800 ps. Signal polarization at long-wavelength side of associates absorption spectrum near 900 nm was negative (?0.1). The interaction of LH3 and LH2 complexes in associates is, to some extent, analogous to the interaction of LH2 and LH1 complexes in chromatophores. Time constant of excitation energy transfer between LH3 and LH2 complexes in associates may be regarded as a minimal time constant for energy transfer between the peripheral and core antenna complexes.  相似文献   

6.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

7.
Genomic organization of the complex α-gliadin gene loci in wheat   总被引:1,自引:0,他引:1  
To better understand the molecular evolution of the large -gliadin gene family, a half-million bacterial artificial chromosome (BAC) library clones from tetraploid durum wheat, Triticum turgidum ssp. durum (2n=4x=28, genome AB), were screened for large genomic segments carrying the -gliadin genes of the Gli-2 loci on the group 6 homoeologous chromosomes. The resulting 220 positive BAC clones—each containing between one and four copies of -gliadin sequences—were fingerprinted for contig assembly to produce contiguous chromosomal regions covering the Gli-2 loci. While contigs consisting of as many as 21 BAC clones and containing up to 17 -gliadin genes were formed, many BAC clones remained as singletons. The accuracy of the order of BAC clones in the contigs was verified by Southern hybridization analysis of the BAC fingerprints using an -gliadin probe. These results indicate that -gliadin genes are not evenly dispersed in the Gli-2 locus regions. Hybridization of these BACs with probes for long terminal repeat retrotransposons was used to determine the abundance and distribution of repetitive DNA in this region. Sequencing of BAC ends indicated that 70% of the sequences were significantly similar to different classes of retrotransposons, suggesting that these elements are abundant in this region. Several mechanisms underlying the dynamic evolution of the Gli-2 loci are discussed.  相似文献   

8.
9.
The technique of horseradish peroxidase retrograde axonal transport and local electrical stimulation of the pre-Botzinger complex was used to study the connections between neurones of the bulbar respiratory nucleus and descending pathways from bulbar nuclei in the cat spinal cord. A possible role of the nuclei under study for rhythmogenesis of breathing and respiratory control, is discussed.  相似文献   

10.
11.
In this work we study the effect of UV-A radiation on the function of the photosynthetic apparatus in thylakoid membranes with different organization of the light-harvesting complex II–photosystem II (LHCII–PSII) supercomplex. Leaves and isolated thylakoid membranes from a number of previously characterized pea species with different LHCII size and organization were subjected to UV-A treatment. A relationship was found between the molecular organization of the LHCII (ratio of the oligomeric to monomeric forms of LHCII) and UV-A-induced changes both in the energy transfer from PSII to PSI and between the chlorophyll–protein complexes within the LHCII–PSII supercomplex. Dependence on the organization of the LHCII was also found with regard to the degree of inhibition of the photosynthetic oxygen evolution. The susceptibility of energy transfer and oxygen evolution to UV-A radiation decreased with increasing LHCII oligomerization when the UV-A treatment was performed on isolated thylakoid membranes, in contrast to the effect observed in thylakoid membranes isolated from pre-irradiated pea leaves. The data suggest that UV-A radiation leads mainly to damage of the PSIIα centers. Comparison of membranes with different organization of their LHCII–PSII supercomplex shows that the oligomeric forms of LHCII play a key role for sensitivity to UV-A radiation of the photosynthetic apparatus. S. G. Taneva is Associated member of the Institute of Biophysics, Bulgarian Academy of Sciences.  相似文献   

12.
In Gram-negative bacteria, trans-envelope efflux pumps have periplasmic membrane fusion proteins (MFPs) as essential components. MFPs act as mediators between outer membrane factors (OMFs) and inner membrane factors (IMFs). In this study, structure–function relations of the ATP-driven glycolipid efflux pump DevBCA-TolC/HgdD from the cyanobacterium Anabaena sp. PCC 7120 were analyzed. The binding of the MFP DevB to the OMF TolC absolutely required the respective tip-regions. The interaction of DevB with the IMF DevAC mainly involved the β-barrel and the lipoyl domain. Efficient binding to DevAC and TolC, substrate recognition and export activity by DevAC were dependent on stable DevB hexamers.  相似文献   

13.
The recently developed technique of Magneto-Optical Difference Spectroscopy (MODS) [10] has been applied to reaction centers (RC) of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. Absorbance changes induced by a magnetic field are measured as a function of wavelength yielding the triplet-minus-singlet (T-S) absorbance difference spectrum. (T-S) spectra thus obtained have been measured from 24–290 K. Going from low to high temperature the (T-S) spectra show the following features:
  1. A rapid decrease of positive absorption bands at 809 and 819 nm.
  2. A slow appearance of a band shift at 798 nm.
  3. A shift of the peak wavelength of the Qy absorbance band of the primary donor P-860 from 992 to 861 nm, and of its Qx band from 603 to 600 nm.
The spectra at 24, 66, 116, and 290 K have been analyzed by Gaussian deconvolution. The 800 nm region of the spectrum at 24 K can be decomposed in a combination of two band shifts and an appearing band. The temperature dependence of the spectra in this region is well explained by spectral broadening of the two shifting bands combined with a decrease in intensity of the appearing band when the temperature increases. The two shifting bands in the 800 nm region are identified as the two bands at 803 and 813 nm which together make up the 800 nm band in the absorption spectrum and are assigned to the two accessory RC bacteriochlorophylls (BChls). The band shift of the 813 nm pigment is appreciably larger than that of the 803 nm pigment. The appearing band at 808 nm is attributed to monomeric absorption of 3P-860, the triplet state being localized on one BChl. We find no evidence for admixture of a charge transfer (CT) state of 3P-860 with one of the accessory BChls at higher temperature.  相似文献   

14.
Diacylglycerol (DAG) and phosphatidic acid (PA) are lipids with unique functions as metabolic intermediates, basic membrane constituents, and second-signal components. Diacylglycerol kinases (DGK) regulate the levels of these two lipids, catalyzing the interconversion of one to the other. The DGK family of enzymes is composed of 10 isoforms, grouped into five subfamilies based on the presence of distinct regulatory domains. From its initial characterization as a type IV DGK to the generation of mouse models showing its importance in cardiac dysfunction and immune pathologies, diacylglycerol kinase ζ (DGKζ) has proved an excellent example of the critical role of lipid-metabolizing enzymes in the control of cell responses. Although the mechanism that regulates this enzyme is not well known, many studies demonstrate its subtle regulation and its strategic function in specific signaling and as part of adaptor protein complexes. These data suggest that DGKζ offers new opportunities for therapeutic manipulation of lipid metabolism.  相似文献   

15.
The Fenna–Matthews–Olson (FMO) complex from the green sulfur bacterium Chlorobaculum tepidum was studied with respect to its stability. We provide a critical assessment of published and recently measured optical spectra. FMO complexes were found to destabilize over time producing spectral shifts, with destabilized samples having significantly higher hole-burning efficiencies; indicating a remodeled protein energy landscape. Observed correlated peak shifts near 825 and 815 nm suggest possible correlated (protein) fluctuations. It is proposed that the value of 35 cm?1 widely used for reorganization energy (E λ ), which has important implications for the contributions to the coherence rate (Kreisbeck and Kramer 3:2828–2833, 2012), in various modeling studies of two-dimensional electronic spectra is overestimated. We demonstrate that the value of E λ is most likely about 15–22 cm?1 and suggest that spectra reported in the literature (often measured on different FMO samples) exhibit varied peak positions due to different purification/isolation procedures or destabilization effects.  相似文献   

16.
We studied fluorescent and absorption properties of the chloroplasts and pigment–protein complexes isolated by gel electrophoresis from the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific fluorescence peaks of chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their second derivatives at 23 and –196°C. The mutant chlorotica 2004 proved to have an increased intensity of a long-wave band of the light-harvesting complex I at both 23°C (745 nm) and –196°C (728 nm). At the same time, this mutant manifested a decreased accumulation of the chlorophyll forms making up the nearest-neighbor antenna of the PS I reaction center (at 690, 697, and 708 nm). No spectral differences have been revealed between chlorotica 2014 mutant and the parent cultivar. Gel electrophoresis revealed the synthesis of all chlorophyll–protein complexes in both mutants. At the same time, analysis of photochemical activity of PS I and PS II reaction centers and calculations of their number and the size of the light-harvesting antenna have shown that the number of reaction centers in the PS I of chlorotica 2004 mutant is reduced by a factor of 1.7 because its chlorophyll a–protein complex is disturbed by the mutation. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the content of photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.  相似文献   

17.
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain–calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca2 +] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.  相似文献   

18.
19.
The pyridazinone-type herbicide norflurazon SAN 9789 inhibiting the biosynthesis of long-chain carotenoids results in significant decrease in PS II core complexes and content of light-harvesting complex (LHC) polypeptides in the 29.5–21 kDa region. The Chl a forms at 668, 676, and 690 nm that belong to LHC and antenna part of PS I disappear completely after treatment. The intensity of the Chl b form at 648 nm is sharply decreased in treated seedlings grown under 30 or 100 lx light intensity. The bands of carotenoid absorption at 421, 448 (Chl a), 452, 480, 492, 496 (β-carotene), and 508 nm also disappear. The band shift from 740 to 720 nm and decrease in its intensity relative to the 687 nm emission peak in the low-temperature fluorescence spectrum (77 K) suggests a disturbance of energy transfer from LHC to the Chla form at 710–712 nm.  相似文献   

20.
Oxidation-reduction potentiometry was carried out on Rhodopseudomonas viridis chromatophores. Measurements of e.p.r. signals of the semiquinone-iron type at g=1.82 have revealed a more complex situation than previously reported. The presence of three different components is indicated. The midpoint potential (E(m)) of the primary acceptor quinone/semiquinone couple was found to be approx. -165mV at pH10, with a pK being reached at around pH7.5. The primary acceptor also accepts a second electron with an E(m) of -525mV, but this redox transition exhibits a hysteresis effect. Interaction effects indicate the presence of another component with E(m) values at pH10 of approx. -165mV (pK reached at around pH7.5) for single reduction and -350mV (pK at pH10 or greater) for double reduction. It is suggested that this component is the secondary acceptor. Another semiquinone-iron-type component which gives a g=1.82 signal is also present. This component is distinguishable from the primary acceptor by its e.p.r. spectrum, which shows a double peak at g=1.82 and a g(x) line at g=1.76. This component has E(m) values at pH10 for single and double reduction of -15mV and approx. -150mV respectively. Both of these E(m) values are pH-dependent. The presence of an interaction between this component and the photoreduced primary acceptor indicates the close proximity of these components. However, the midpoint potential of this component indicates a function as a secondary electron-transport component rather than an electron acceptor in the reaction centre. The dependence of the bacteriopheophytin intermediate (I) doublet e.p.r. signal on the presence of the semiquinone-iron form of the primary acceptor is demonstrated. The midpoint potential of the I/I(-) couple is estimated to be lower than -600mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号