首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid asymmetry in human erythrocyte ghosts   总被引:6,自引:0,他引:6  
Using phospholipase digestion and the fluorescent probe merocyanine 540 the maintenance of phospholipid asymmetry in the plasma membrane of human erythrocyte ghosts was investigated. Digestion with phospholipase A2 indicated that ghosts prepared in the presence of Mg++ as the only divalent cation retained the normal phospholipid asymmetry characteristic of intact erythrocytes. These ghosts, like normal erythrocytes, also failed to stain with merocyanine 540. However, the presence of as little as 5-10 microM Ca++ during ghost preparation resulted in ghosts in which lipid asymmetry had been abolished, as indicated by phospholipase digestion. Moreover, these ghosts stained with merocyanine 540. In contrast to ghosts, intact erythrocytes treated with ionophore required millimolar levels of Ca++ ions to disrupt membrane lipid asymmetry. To discover the reason for this difference in behavior between ghosts and intact cells, ghosts were prepared from preswollen cells using only small volumes of buffer for lysis. These experiments demonstrated that as the cellular contents of erythrocytes are diluted, the asymmetric arrangement of phospholipids becomes more sensitive to disruption by Ca++.  相似文献   

2.
3.
Diamide-treated human erythrocytes have been compared with native red cells as to the accessibility of their amino phospholipids to both phospholipase A2 hydrolysis and fluorescamine labeling. In agreement with observations by others (Haest, C.W.M., Plasa, G., Kamp, D. and Deuticke, B. (1978) Biochim. Biophys. Acta 509, 21–32), treatment of intact human erythrocytes with diamide resulted in considerably enhanced degradation of amino phospholipids upon subsequent incubation of the cells with bee venom phospholipase A2. The hydrolysis of phosphatidylethanolamine (PE) in control cells reached a plateau value at 5% after 10 min. In diamide-treated cells, on the other hand, PE hydrolysis did not level off. Contrastingly, dose-response curves recorded for the labeling of PE with the very fast reacting NH2-group-specific reagent, fluorescamine, showed identical results for both native and diamide-treated erythrocytes. In each of these two cases, a plateau was reached after approx. 15% of the PE had been labeled. These results strongly suggest that the enhanced phospholipase-A2-induced hydrolysis of amino phospholipids in diamide-treated erythrocytes may reflect a destabilization of the lipid bilayer, rather than an in situ loss of phospholipid asymmetry.  相似文献   

4.
The distribution of phospholipids across the membrane bilayer of Semliki Forest virus grown in BHK cells has been examined by treating the virus with bee venom phospholipase A2 and sphingomyelinase C from Staphylococcus aureus. From the amounts of different phospholipids which are degraded rapidly (half-time about 1 min for phospholipase A2) we calculate that in virus isolated 16 h after infection about 95% of sphingomyelin, 55% of phosphatidylcholine, 20% of phosphatidylethanolamine and less then 5% of phosphatidylserine is present on the outer leaflet of the virus envelope. Less than 5% of the virus was permeable to macromolecules before or after treatment with phospholipases as judged by accessibility of the genome to external ribonuclease. A much slower (half-time about 1 h) breakdown by phospholipase A2 of originally inaccessible phosphatidylcholine and phosphatidylethanolamine appeared to be due to an enzyme-induced loss of lipid asymmetry since the original asymmetric distribution of phospholipids was maintained for several hours when the virus alone was incubated at 37°C. However, virus incubated for 20 h at 37°C showed a marked loss of phosphatidylethanolamine and phosphatidylserine asymmetry and a greater susceptibility to lysis by longer treatment with phospholipase A2.  相似文献   

5.
The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from pig pancreas and Crotalus adamanteus and phospholipase D from cabbage, can hydrolyse phospholipid monolayers at pressure below 31 dynes/cm only.The phospholipases which can hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Clostridium welchii phospholipase A2 from Naja naja and bee venom and sphingomyelinase from Staphylococcus aureus, can hydrolyse phospholipid monolayers at pressure above 31 dynes/cm. It is concluded that the lipid packing in the outer monolayer of the erythrocyte membrane is comparable with a lateral surface pressure between 31 and 34.8 dynes/cm.  相似文献   

6.
(1) By treating Mycoplasma capricolum cells with phospholipase A2 about 80% of membrane phospholipids were rapidly hydrolyzed. The rate and extent of hydrolysis (at 37°C) were the same in intact cells and in isolated unsealed membranes. (2) Due to the low endogenous lysophospholipase activity detected in M. capricolum, phospholipase A2 treatment resulted in the accumulation of lysophospholipids and free fatty acids. The free fatty acids were efficiently extracted from the cells by 1% bovine serum albumin whereas the lysophospholipids were almost fully retained within the cell membrane. (3) Following phospholipase A2 treatment in the presence of 1% bovine serum albumin, cell intactness was preserved as indicated by the constant absorbance of the cell suspension and the retention of nucleic acids and NADH dehydrogenase activity within the cells. The treated cells showed, however, a slight decrease in K+ content and a decrease in cell viability. Viability was fully preserved after phospholipase A2 treatment of cells grown with exogenous sphingomyelin. (4) Adapting M. capricolum to a cholesterol-poor medium resulted in a marked decrease in the cholesterol to phospholipid molar ratio (from about 1.1 to 0.3). Phospholipase A2 treatment of the cholesterol-poor cells resuted in cell lysis. Cell lysis was induced in the cholesterol-rich cells by hydrolysing the lysophospholipids accumulated following phospholipase A2 treatment. (5) It is suggested that after phospholipase A2 treatment of M. capricolum cells, a relatively stable cell membrane is maintained and cell intactness is preseved due to the interaction of cholesterol, present in high amount in this membrane, with the lysophospholipids formed.  相似文献   

7.
Grange  Eric  Rabin  Olivier  Bell  Jane  Chang  Michael C. J. 《Neurochemical research》1998,23(10):1251-1257
The Fatty Acid method was used to determine whether incorporation of plasma radiolabeled arachidonic acid into brain phospholipids is controlled by phospholipase A2. Awake rats received an i.v. injection of a phospholipase A2 inhibitor, manoalide (10 mg/kg), and then were infused i.v. with [1-14C]arachidonate or [3H]arachidonate. Animals were killed after infusion by microwave irradiation, and tracer distribution was analyzed in brain phospholipid, neutral lipid and acyl-CoA pools. Calcium-independent phospholipase A2 activity in brain homogenate was reduced by manoalide, whereas phospholipase C activity was unaffected. At 60 min but not at 20 or 40 min after its injection, manoalide had significantly decreased by 50% incorporation of unesterified arachidonate into and turnover within brain phospholipids, taking into account dilution of the brain arachidonoyl-CoA pool by recycled arachidonate. Manoalide also increased by 100% the net rate of unesterified arachidonate incorporation into brain triacylglycerol. This study indicates that manoalide can be used to inhibit brain phospholipase A2 in vivo, and that phospholipase A2 plays a critical role in arachidonate turnover in brain phospholipids and neutral lipids.  相似文献   

8.
Thylakoid membranes were treated by potato lipolytic acyl hydrolase, phospholipases A2 from pancreas and snake venom, and by phospholipase C from Bacillus cereus under various conditions. The changes in the uncoupled rates of electron transport through Photosystem I (PS I) and in lipid composition were followed during these treatments. Pancreatic phospholipase A2 which destroyed all phospholipids in thylakoid membranes stimulated the NADP+ reduction supported by reduced 2,6-dichlorophenolindophenol. This stimulation concerned only the dark but not the light reactions of this pathway. The main site of action of pancreatic phospholipase A2 may be located on the donor side of PS I; the hydrolysis of phospholipids at this site caused an increased ability of reduced 2,6-dichlorophenolindophenol and ascorbate alone to feed electrons into PS I. A second site may be located on the acceptor side of PS I, probably between the primary acceptor and the ferredoxin system. When thylakoid membranes were first preincubated with or without lipolytic acyl hydrolase at 30°C (pH 8), the NADP+ photoreduction was inhibited whilst the methyl viologen-mediated O2 uptake was stimulated. A subsequent addition of pancreatic phospholipase A2 (which had the same hydrolysis rates for phosphatidylglycerol but not for phosphatidylcholine) further stimulated the O2 uptake and restored NADP+ photoreduction. The extent of this stimulation, which depended on the presence of lipolytic acyl hydrolase, was ascribed partly to the hydrolysis of the phospholipids and partly to the generation of their lyso derivatives but not to the release of free fatty acids. On the contrary, phospholipase C which destroyed only phosphatidylcholine failed to restore this activity. It is suggested that phosphatidylglycerol is the only phospholipid associated with thylakoid membrane structures supporting PS I activities and that this lipid may play a physiological role in the regulation of these activities.  相似文献   

9.
Purified acidic (pI 4.9), neutral (pI 6.9), and basic (pI 8.7) phospholipase A2 from Agkistrodon halys blomhofii showed characteristically different patterns of hemolysis and phospholipid hydrolysis of intact human erthyrocytes. Acidic and neutral enzymes were nonlytic in the early periods of incubations with intact erythrocytes whereas the basic enzyme caused immediate hemolysis (5–8%). Under nonlytic conditions acidic and neutral enzymes hydrolyzed only phosphatidyl choline (PC) (20 and 50%, respectively), whereas basic enzyme hydrolyzed not only PC (60%) but nearly 15% of the phosphatidylethanolamine (PE). Both PC and PE were hydrolyzed significantly when the three phospholipases A2 were incubated individually with erythrocyte lysate or hypotonic ghosts (sealed or unsealed). The order of substrate preference for acidic and neutral enzymes was always PC > PE. On the contrary basic enzyme exhibited the property of substrate specificity reversal. It hydrolyzed PC faster than PE when the membranes were sealed whereas PE hydrolysis was faster than PC hydrolysis in unsealed membranes. Interestingly only the basic enzyme showed activity in the absence of Ca2+ and in the presence of 0.5 mm EDTA. Phospholipase C (Bacillus cereus or Clostridium perfringens) did not show the property of substrate specificity reversal although their ability to hydrolyze PC and PE was different. In general this study demonstrates the unique activity patterns of three physically different pure phospholipases A2 on human erythrocyte membranes which could be of value in selectively modifying membrane phospholipids. In addition it also throws an important light on the fact that results obtained with phospholipases should be interpreted with caution particularly as regards the localization of phospholipids in membranes.  相似文献   

10.
The phospholipids and fatty acid analysis of four strains of Rhodopseudomonas sphaeroides and of chromatophores from two strains show some differences and also show the presence of an unusual polar neutral lipid which is ninhydrin positive and which on acid hydrolysis yields ornithine and an unidentified amino compound. This lipid is called aminolipid-X and has a fatty acid composition very different from the phospholipids. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contain a very small amount of plasmalogen forms as determined by combined mild alkaline hydrolysis, acetic acid hydrolysis and phospholipase A2 hydrolysis.The reaction of intact cells and chromatophores with trinitrobenzenesulfonate (TNBS), fluorodinitrobenzene (FDNB) and isethionylacetimidate (IA) show that 78% of the total PE in chromatophores is localized on the outer membrane surface. In intact cells about 15–35% of the total PE is localized on the outer surface of the plasma membrane.  相似文献   

11.
Phospholipase A2 (Naja naja) and phospholipase C (from either Clostridium welchii or Bacillus cereus) have been tested on phospholipid dispersions and natural or reconstituted membranes; notwithstanding the different substrate specificities, the different enzymes gave comparable behaviors, suggesting that the results were the expression of sterical features in the lipid bilayers, i.e., availability of the phospholipids to enzymatic attack. The hydrolysis of phospholipids (Asolectin) in sonic protein-free vesicles is hindered by ionic interaction with basic proteins (cytochrome c or lysozyme). On the other hand binding of Asolectin to lipid-depleted mitochondria to obtain reconstituted mitochondria does not prevent phospholipase action on the phospholipids; similarly, phospholipids are hydrolyzed at maximal rates in natural membranes (mitochondria or submitochondrial particles). Surprisingly, ionic interaction of RM or natural membranes with basic proteins does not prevent phospholipase hydrolysis of the membrane phospholipids. The interpretation of this phenomenon may be related to the heterogeneity of phospholipid distribution in protein-containing membranes.  相似文献   

12.
Summary The role of phospholipids in the binding of [3H] tetrodotoxin to garfish olfactory nerve axon plasma membrane was studied by the use of purified phospholipases. Treatment of the membranes with low concentrations of either phospholipase A2 (Crotalus adamanteus andNaja naja) or phospholipase C (Bacillus cereus andClostridium perfringens) resulted in a marked reduction in tetrodotoxin binding activity. A 90% reduction in the activity occurred with about 45% hydrolysis of membrane phospholipids by phospholipase A2, and with phospholipase C the lipid hydrolysis was about 60–70% for a 70–80% reduction in the binding activity. Phospholipase C fromB. cereus andCl. perfringens had similar inhibitory effects. Bovine serum albumin protected the tetrodotoxin binding activity of the membrane from the inhibitory effect of phospholipase A2 but not from that of phospholipase C. In the presence of albumin about 25% of the membrane phospholipids remained unhydrolyzed by phospholipase A2. It is suggested that these unhydrolyzed phospholipids are in a physical state different from the rest of the membrane phospholipids and that these include the phospholipids which are directly related to the tetrodotoxin binding component. It is concluded that phospholipids form an integral part of the tetrodotoxin binding component of the axon membrane and that the phospholipase-caused inhibition of the binding activity is due to effects resulting from alteration of the phospholipid components.  相似文献   

13.
After incubation of human erythrocytes at 37 °C in the absence of glucose (A) for 24 h, (B) for 4 h with 8 mM hexanol or (C) for 3 h with SH reagents, phosphatidylethanolamine becomes partly susceptible to hydrolysis by phospholipase A2 from Naja naja. The presence of glucose during the pretreatments suppresses this effect, except in the case of SH reagents that inhibit glycolysis. After incubation with tetrathionate, up to 45% of the phosphatidylethanolamine is degraded by the enzyme, an amount considerably in excess of the 20% attacked in fresh erythrocytes.Pancreatic phospholipase A2, an enzyme unable to hydrolyse the phospholipids of intact erythrocytes, partially degrades phosphatidylcholine and phosphatidylethanolamine of erythrocytes pretreated with hexanol or SH reagents. Reagents capable of oxidizing SH groups to disulfides (tetrathionate, o-iodosobenzoate and hydroquinone) even render susceptible to pancreatic phospholipase A2 phosphatidylserine, a phospholipid supposed to be entirely located in the inner lipid layer of the membrane. Alkylating or acylating SH reagents have no such effect. It is postulated that disulfide bond formation between membrane protein SH groups leads to an alteration in protein-phospholipid interactions and consequently induces a reorientation of phospholipids between the inner and the outer membrane lipid layer.  相似文献   

14.
1. The effects of lipid-protein interactions on carp brain and liver mitochondrial MAO with respect to substrate and inhibitor preference, thermostability and Arrhenius parameters were studied and compared.2. Treatment with phospholipase A2, C or D decreased MAO activities towards 5-hydroxytryptamine (5-HT), β-phenylethylamine and tyramine similarly, accompanied by great changes in their apparent affinities for MAO, but not by changes in Vmax values.3. Minimum phospholipid binding to mitochondria might be essential for enzyme activity.4. Among these activities, 5-HT deamination was the most sensitive to the changes in mitochondrial phospholipids and bulk lipid phase transition (fluidity).5. Sensitivity of MAO to clorgyline or l-deprenyl was not affected by these phospholipase treatments.6. Of the phospholipids tested, only phosphatidylinositol significantly activated MAO activity towards 5-HT in both intact and phospholipase-treated mitochondria.  相似文献   

15.
The lipid requirement of the (Ca2+ + Mg2+)-stimulated ATPase of human erythrocytes has been studied. The enzyme activity was lost after removal of the phospholipids using phospholipase A2 from Naja naja and serum albumin. Optimal restoration of the (Ca2+ + Mg2+)-ATPase activity in the partially lipid-depleted membranes was obtained with oleate. The reactivation was not due to the removal of a permeability barrier for ATP, since lysolecithin or cholate did not show latent activity. Reactivation was also obtained with several negatively charged phospholipids. Among the ones normally found in the erythrocyte membranes, only phosphatidyl serine reactivated significantly.  相似文献   

16.
The time-dependent accumulation of phosphatidyldimethylethanolamine in formaldehyde-induced vesicles obtained from a somatic cell hybrid line was investigated. From a number of considerations including a two-fold enrichment of cholesterol and sphingomyelin it was concluded that these vesicles were derived from the cell plasma membrane.A progressive depletion of phosphatidylcholine, the major vesicle phospholipid, was observed in cells supplemented for various time periods with dimethylethanolamine. This depletion was accompanied by a concomitant increase in the amount of lipid analog.The time-dependent alteration of the phospholipid polar head group in intact cells was almost identical to that observed in isolated plasma membrane vesicles, suggesting a rapid equilibration of the de novo synthesized phospholipid with the cell surface compartment. From the initial velocity rate, the time required for the phosphatidylcholine pool to double was about 12 h.Agarose-linked phospholipase A2 was used to measure the relative composition of choline- and dimethylethanolamine-phosphoglycerides in the outer surface of vesicles prepared from cells with different degrees of polar head group substitution. The gradual appearance of lysodimethylethanolamine lipid analog in vesicles treated with phospholipase A2 suggested an asymmetric distribution of the phospholipid between the interior and the exterior part of the vesicle. This asymmetry was maximal up to about 4 h following the addition of dimethylethanolamine to the culture medium and was of a transient nature as the lipid analog accumulated on both sides of the plasma membrane. Based on these measurements a fast followed by a slow translocation component could be distinguished with apparent doubling times of 7 and 43 h for the lipid analog, respectively. As the analog becomes the predominant cellular phospholipid a significant increase in the vesicle lipid fluidity was measured.  相似文献   

17.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

18.
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.  相似文献   

19.
20.
(1) Krebs II ascites cells were taken as a model of the neoplastic cells to investigate the transverse distribution of phospholipids in the plasma membrane. The experimental procedure was based on non-lytic degradation of phospholipids in the intact cell by Naja naja phospholipase A2 and Staphylococcus aureus sphingomyelinase C and on phopholipid analysis of purified plasma membranes. It was shown that the three major phospholipids, i.e., phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, are randomly distributed between the two halves of the membranes, whereas phosphatidylserine remains located in the inner leaflet. (2) The membrane localization of phosphatidylcholine and phosphatidylethanolamine subclasses (diacyl, alkylacyl and alkenylacyl) was also examined, using a new procedure of ether-phospholipid determination. The method involves a selective removal of diacyl species by guinea pig pancreas phospholipase A1 and of alkenylacyl species by acidolysis. This analysis revealed a 50% increase of ether phospholipids in the plasma membrane as compared to the whole cell (36.5 and 23.1% of total phospholipid, respectively). Furthermore, a strong membrane asymmetry was demonstrated for the three phosphatidylcholine subclasses, since 1-alkyl-2-acyl-sn-glycerol-3-phosphocholine (alkylacyl-GPC) was entirely found in the inner leaflet, whereas both diacyl- and alkenylacyl-GPC displayed an external localization. The same pattern was observed for phosphatidylethanolamine subclasses, except for 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine, which was found randomly distributed. These results are discussed in relation to the process of cell malignant transformation and to the biosynthesis of platelet-activating factor (PAF-acether or 1-alkyl-2-acetyl-GPC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号