首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many cyanobacteria species can use both plastocyanin and cytochrome c6 as lumenal electron carriers to shuttle electrons from the cytochrome b6f to either photosystem I or the respiratory cytochrome c oxidase. In Synechocystis sp. PCC6803 placed in darkness, about 60% of the active PSI centres are bound to a reduced electron donor which is responsible for the fast re-reduction of P700 in vivo after a single charge separation. Here, we show that both cytochrome c6 and plastocyanin can bind to PSI in the dark and participate to the fast phase of P700 reduction, but the fraction of pre-bound PSI is smaller in the case of cytochrome c6 than with plastocyanin. Because of the inter-connection of respiration and photosynthesis in cyanobacteria, the inhibition of the cytochrome c oxidase results in the over-reduction of the photosynthetic electron transfer chain in the dark that translates into a lag in the kinetics of P700 oxidation at the onset of light. We show that this is true both with plastocyanin and cytochrome c6, indicating that the partitioning of electron transport between respiration and photosynthesis is regulated in the same way independently of which of the two lumenal electron carriers is present, although the mechanisms of such regulation are yet to be understood.  相似文献   

2.
The stability and aggregation of NIST monoclonal antibody (NISTmAb) were investigated by hydrogen/deuterium exchange mass spectrometry (HDX‐MS), differential scanning calorimetry (DSC), and nano‐differential scanning fluorimetry (nanoDSF). NISTmAb was prepared in eight formulations at four different pHs (pH 5, 6, 7, and 8) in the presence and absence of 150 mM NaCl and analyzed by the three methods. The HDX‐MS results showed that NISTmAb is more conformationally stable at a pH near its isoelectric point (pI) in the presence of NaCl than a pH far from its pI in the absence of NaCl. The stabilization effects were global and not localized. The midpoint temperature of protein thermal unfolding transition results also showed the CH2 domain of the protein is more conformationally stable at a pH near its pI. On the other hand, the onset of aggregation temperature results showed that NISTmAb is less prone to aggregate at a pH far from its pI, particularly in the absence of NaCl. These seemingly contradicting results, higher conformational stability yet higher aggregation propensity near the pI than far away from the pI, can be explained by intramolecular and intermolecular electrostatic repulsion using Lumry‐Eyring model, which separates folding/unfolding equilibrium and aggregation event. The further a pH from the pI, the higher the net charge of the protein. The higher net charge leads to greater intramolecular and intermolecular electrostatic repulsions. The greater intramolecular electrostatic repulsion destabilizes the protein and the greater intermolecular electrostatic repulsion prevents aggregation of the protein molecules at pH far from the pI.  相似文献   

3.
4.
Cytochrome c6 is a soluble electron carrier, present in all known cyanobacteria, that has been replaced by plastocyanin in plants. Despite their high structural differences, both proteins have been reported to be isofunctional in cyanobacteria and green algae, acting as alternative electron carriers from the cytochrome b6-f complex to photosystem I or terminal oxidases. We have investigated the subcellular localization of both cytochrome c6 and plastocyanin in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 grown in the presence of combined nitrogen and under diazotrophic conditions. Our studies conclude that cytochrome c6 is expressed at significant levels in heterocysts, even in the presence of copper, condition in which it is strongly repressed in vegetative cells. However, the copper-dependent regulation of plastocyanin is not altered in heterocysts. In addition, in heterocysts, cytochrome c6 has shown to be the main soluble electron carrier to cytochrome c oxidase-2 in respiration. A cytochrome c6 deletion mutant is unable to grow under diazotrophic conditions in the presence of copper, suggesting that cytochrome c6 plays an essential role in the physiology of heterocysts that cannot be covered by plastocyanin.  相似文献   

5.
Most organisms performing oxygenic photosynthesis contain either cytochrome c 6 or plastocyanin, or both, to transfer electrons from cytochrome b 6-f to photosystem I. Even though plastocyanin has superseded cytochrome c 6 along evolution, plants contain a modified cytochrome c 6, the so called cytochrome c 6A, whose function still remains unknown. In this article, we describe a second cytochrome c 6 (the so called cytochrome c 6-like protein), which is found in some cyanobacteria but is phylogenetically more related to plant cytochrome c 6A than to cyanobacterial cytochrome c 6. In this article, we conclude that the cytochrome c 6-like protein is a putative electron donor to photosystem I, but does play a role different to that of cytochrome c 6 and plastocyanin as it cannot accept electrons from cytochrome f. The existence of this third electron donor to PSI could explain why some cyanobacteria are able to grow photoautotrophically in the absence of both cytochrome c 6 and plastocyanin. In any way, the Cyt c 6-like protein from Nostoc sp. PCC 7119 would be potentially utilized for the biohydrogen production, using cell-free photosystem I catalytic nanoparticles.  相似文献   

6.
Fraction 2 (grana-stack) particles prepared with the French press showed absorbance changes, at room temperature and with sodium ascorbate and methyl-viologen, that were produced by the oxidation of cytochrome b-559. This oxidation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and sensitized by system II of photosynthesis. The oxidation is too slow to account for the rates of the Hill reaction that have been observed with nicotinamide-adenine dinucleotide phosphate (NADP+). It appears that this cytochrome is not functioning in the main pathway of electron transport. In the presence of 2,3,5,6-tetramethyl-p-phenylene-diamine (DAD) and ascorbate, light-induced oxidation of cytochrome f took place within 3 msec (or faster) in the grana-stack particles. Treatment with the detergent Triton X-100 disrupted this rapid cytochrome f oxidation as well as the oxidation of cytochrome b-559. Subsequent plastocyanin addition did not restore the rapid oxidation of cytochrome f (nor of cytochrome b-559) but only slow changes of cytochrome f. In view of the fact that these particles contain almost no plastocyanin, it is unlikely that plastocyanin functions in electron transport between cytochrome f and P-700 in the particles derived from the grana-stack regions of the chloroplast.  相似文献   

7.
Brownian dynamics simulations were used to study the role of electrostatic forces in the interactions of cytochrome f from the cyanobacterium Phormidium laminosum with various cyanobacterial plastocyanins. Both the net charge on the plastocyanin molecule and the charge configuration around H92 (H87 in higher plants) are important in determining the interactions. Those plastocyanins (PCs) with a net charge more negative than -2.0, including those from Synechococcus sp. PCC7942, Synechocystis sp. 6803, and P. laminosum showed very little complex formation. On the other hand, complex formation for those with a net charge more positive than -2.0 (including Nostoc sp. PCC7119 and Prochlorothrix hollandica) as well as Nostoc plastocyanin mutants showed a linear dependence of complex formation upon the net charge on the plastocyanin molecule. Mutation of charged residues on the surface of the PC molecules also affected complex formation. Simulations involving plastocyanin mutants K35A, R93A, and K11A (when present) showed inhibition of complex formation. In contrast, D10A and E17A mutants showed an increase in complex formation. All of these residues surround the H92 (H87 in higher plant plastocyanins) ligand to the copper. An examination of the closest electrostatic contacts shows that these residues interact with D63, E123, R157, D188, and the heme on Phormidium cytochrome f. In the complexes formed, the long axis of the PC molecule lies perpendicular to the long axis of cytochrome f. There is considerable heterogeneity in the orientation of plastocyanin in the complexes formed.  相似文献   

8.
Jerry Brand  Anthony San Pietro 《BBA》1973,325(2):255-265
1. Chloroplast fragments from either Chlamydomonas reinhardi or spinach, which lack plastocyanin, or from Euglena gracilis depleted of cytochrome c552, require a large excess of exogenously added plastocyanin or cytochrome c552 to restore Photosystem I activity.2. In the presence of a small amount of polylysine, Photosystem I activity of chloroplast fragments is stimulated greatly by plastocyanin or cytochrome c552, and the reaction is saturated at a lower concentration of these proteins. Higher concentrations of polylysine inhibit Photosystem I activity; the inhibition is not reversed by plastocyanin or cytochrome c552.3. Salt protects chloroplast fragments from stimulation by polylysine plus plastocyanin or cytochrome c552, and also reverses this stimulation.4. The data suggest that polylysine, at low concentration, enhances binding of plastocyanin or cytochrome c552 to chloroplast membranes, thereby increasing the effective concentration at their site of function. The total inhibition of Photosystem I activity, independent of the presence of plastocyanin or cytochrome c552, at higher polylysine concentrations is similar probably to that observed previously in chloroplasts which retain their plastocyanin.  相似文献   

9.
In certain cyanobacteria and algae, cytochrome c553 or plastocyanin can serve to carry electrons from the cytochrome bf complex to photosystem I. The availability of copper in the growth medium regulates which protein is present. To investigate copper induced control of gene expression we isolated these proteins from the cyanobacterium Synechocystis 6803. Using immunodetection and optical spectroscopy, the steady state levels of cytochrome c553 and plastocyanin were measured in cells grown at different copper concentrations. The results show that in cells grown in 20-30 nM copper, cytochrome c553 was present, whereas plastocyanin was not detected. The opposite behavior was observed in cells grown in the presence of 1 microM copper; plastocyanin was present, whereas cytochrome c553 could not be detected. Both proteins were present in cells grown in 0.3 microM copper. Northern analysis of total RNA, probed with a gene fragment for cytochrome c553 or the plastocyanin gene, showed that cells grown in the presence of 20-30 nM copper have message for cytochrome c553, but not for plastocyanin, whereas cells grown in 1 microM copper have message for plastocyanin, but not for cytochrome c553. These results demonstrate that copper regulates expression of both of the genes encoding cytochrome c553 and plastocyanin prior to translation in Synechocystis 6803.  相似文献   

10.
Kinetic studies on a cross-linked complex between plastocyanin cytochrome f   总被引:2,自引:0,他引:2  
A cross-linked complex between plastocyanin and cytochrome f was prepared by incubation in the presence of a water soluble carbodiimide and its kinetic properties were studied. The optical spectra, oxidation-reduction potentials and isoelectric pH of plastocyanin and cytochrome f did not change upon the formation of the cross-linked complex. Studies on the ionic strength effect on the electron transfer rate from cross-linked plastocyanin to ferricyanide indicated that the negative charge on the reaction site of plastocyanin was masked upon the cross-linking. It was also suggested that the sign of the net charge near the cytochrome f heme edge changed from positive to negative upon the cross-linking. On the other hand, electrostatic interactions between cross-linked plastocyanin and P700 seemed to be essentially the same as those in the case of native plastocyanin, although the rate of electron transfer from cross-linked plastocyanin to P700 was severely reduced. We also measured the intra-complex electron transfer from cytochrome f to plastocyanin. This suggested that the covalently cross-linked complex is a valid model of the electron transfer encounter complex. Based on these results, the reaction sites of plastocyanin with P700 and cytochrome f were discussed.  相似文献   

11.
The kinetics of the oxidation-reduction reactions of cytochrome c1 with ascorbate, ferricyanide, triphenanthrolinecobalt(III) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) have been examined using the stopped-flow technique. The reduction of ferricytochrome c1 by ascorbic acid is investigated as a function of pH. It is shown that at neutral and alkaline pH the reduction of the protein is mainly performed by the doubly deprotonated form of ascorbate. From the ionic-strength-dependence studies of the reactions of cytochrome c1 with ascorbate, ferricyanide and triphenanthrolinecobalt(III), it is demonstrated that the reaction rate is governed by electrostatic interactions. The second-order rate constants for the reaction of cytochrome c1 with ascorbate, ferricyanide, TMPD and triphenanthrolinecobalt(III) are 1.4·104, 3.2·103, 3.8·104 and 1.3·108 M?1·s?1 (pH 7.0, I = 0, 10°C), respectively. Application of the Debye-Hückel theory to the the ionic-strength-dependence studies of these redox reactions of cytochrome c1 yielded for ferrocytochrome c1 and ferricytochrome c1 a net charge of ?5 and ?4, respectively. The latter value is close to that of ?3 for the oxidized enzyme, calculated from the amino acid sequence of the protein. This implies that not a local charge on the surface of the protein, but the overall net charge of cytochrome c1 governs the reaction rate with small redox molecules.  相似文献   

12.
The reaction of plastocyanin with tetranitromethane results in the nitration of only one of the three tyrosyl residues present in the protein. The modification does not affect the blue copper chromophore as both the characteristic visible spectrum of the chromophore and the redox potential of the protein are unchanged. Photochemical assays show that the modified plastocyanin is fully active in the reduction of photooxidized P700 and in the photooxidation of cytochrome f. The pK of the nitro-tyrosyl residue is about 7.3 indicating that the modified residue may be located in a negatively charged environment. Examination of the recently published X-ray structure of poplar plastocyanin suggests that Tyr-80 would be a likely candidate for the site of modification.  相似文献   

13.
This paper reports the first site-directed mutagenesis analysis of any cytochrome c6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochrome c6 from the cyanobacterium Synechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c6 are located in an acidic patch that may be isofunctional with the well known "south-east" patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochrome c6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c6 acidic area, seems to be crucial for the interaction with the reaction center.  相似文献   

14.
Pierre Joliot  Anne Joliot 《BBA》1984,765(2):219-226
(1) The equilibrium constants for the redox reactions occurring between Photosystem (PS) I donors were measured on chloroplasts, dark-adapted in the presence of sodium ascorbate and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and then illuminated by d.c. light. The equilibrium constant for the electron transfer between plastocyanin and P-700 is close to 1 and the overall equilibrium constant between cytochrome f and P-700 is about 2.3. As these equilibrium constants do not depend upon the intensity of the d.c. beam, the low values we measured cannot be due to kinetic limitations. (2) The equilibrium constants were measured also in the absence of DCMU using chloroplasts in oxidizing conditions (ferricyanide or far red illumination) illuminated by a saturating flash. During the course of the reduction of PS I donors by plastoquinol molecules formed by the flash, the equilibrium constants are higher than in the preceding conditions: the value for plastocyanin to P-700 is close to 5, and that for cytochrome f to P-700 is about 25. (3) The variations of these equilibrium constants are tentatively interpreted as being due to mutual electrostatic interactions between cytochrome b and f which are included in the same complex. This model implies that the perturbation of the redox properties of cytochrome f by a positive charge located on cytochrome b is identical to the perturbation of the redox properties of cytochrome b by a positive charge located on cytochrome f.  相似文献   

15.
Plastocyanin and cytochrome c 6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes b 6 f and Photosystem I. Despite plastocyanin and cytochrome c 6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern (one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c 6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria, in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins have been shown to be critical for the electron transfer reaction. Cytochrome c 6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction with Photosystem I. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Plastocyanin and cytochrome c552 are interchangeable electron carriers in the photosynthetic electron transfer chains of some cyanobacteria and green algae (P. M. Wood, Eur. J. Biochem. 87:9-19, 1978; G. Sandmann et al., Arch. Microbiol. 134:23-27, 1983). Chlamydomonas reinhardi cells respond to the availability of copper in the medium and accordingly accumulate either plastocyanin (if copper is available) or cytochrome c552 (if copper is not available). The response occurs in both heterotrophically and phototrophically grown cells. We have studied the molecular level at which this response occurs. No immunoreactive polypeptide is detectable under conditions where the mature protein is not spectroscopically detectable. Both plastocyanin and cytochrome c552 appear to be translated (in vitro) from polyadenylated mRNA as precursors of higher molecular weight. RNA was isolated from cells grown either under conditions favorable for the accumulation of plastocyanin (medium with Cu2+) or for the accumulation of cytochrome c552 (without Cu2+ added to the medium). Translatable mRNA for preapoplastocyanin was detected in both RNA preparations, although mature plastocyanin was detected in C. reinhardi cells only when copper was added to the culture. Translatable mRNA for preapocytochrome, on the other hand, was detected only in cells grown under conditions where cytochrome c552 accumulates (i.e., in the absence of copper). We conclude that copper-mediated regulation of plastocyanin and cytochrome c552 accumulation is effected at different levels, the former at the level of stable protein and the latter at the level of stable mRNA.  相似文献   

17.
Chemically modified spinach plastocyanin, in which negatively charged carboxyl residues are replaced with positively charged amino residues, has been prepared. Four distinct species of chemically modified plastocyanin, having 1 to 4 mol of modified carboxyl residue per mol of plastocyanin, could be separated by ion-exchange chromatography on DEAE-Sephacel. The rate of electron transfer from reduced cytochrome f to oxidized singly substituted plastocyanin was 30% of that of the native unmodified plastocyanin, and the reaction rate decreased further with increasing number of modified carboxyl residues. These results indicate the importance of electrostatic interactions between the negative charges on plastocyanin and the positive charges on cytochrome f in this reaction. Since the overall net charge of cytochrome f is negative at neutral pH, the positive charges on cytochrome f involved in the reaction should be localized ones. On the other hand, the rates of electron transfer from reduced singly and doubly substituted plastocyanin to photooxidized P700 in the P700-chlorophyll alpha protein complex were similar to that of native plastocyanin, which suggests that these carboxyl residues have only a minor role in the electron transfer to P700. Although divalent cation is essential for the electron transfer from native plastocyanin to P700 at neutral pH, the triply substituted plastocyanin could donate electrons to P700 even without MgCl2, and the rate of this reaction reached the maximum at a low concentration of MgCl2 (less than 2.5 mM). The modification of four carboxyl residues per plastocyanin molecule activated this reaction to the maximum level without MgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Chemical modification of plastocyanin was carried out using 4-chloro-3,5-dinitrobenzoic acid, which has the effect of replacing positive charges on amino groups with negatively charged carboxyl groups. Four singly-modified forms were obtained which were separated using anion exchange FPLC. The four forms were modified at the N-terminal valine and at lysines 54, 71 and 77. The rates of reaction with mammalian cytochrome c were increased for all four modified plastocyanins. In contrast, the rates of reaction with cytochrome f were inhibited for the forms modified at residues 1, 54 and 77, whereas no effect was observed for the form modified at residue 71. Modification had no effect on either the midpoint redox potential or the reaction with K3Fe(CN)6. These results are consistent with a model in which charged residues on plastocyanin located at or near the binding site for cytochrome f recognize the positively-charged binding site on cytochrome f. In contrast, charged residues located at points on plastocyanin distant from the cytochrome f binding site recognize the net negative charge on the cytochrome f molecule. Based on these considerations, Glu-68 may be within the interaction sphere of cytochrome f, suggesting that cytochrome f may donate electrons to plastocyanin at either Tyr-83 or His-87.  相似文献   

19.
The primary translation products of pulmonary surfactant-associated glycoprotein(s) A, the major apolipoprotein in mammalian surfactants, exhibit extensive charge heterogeneity. After in vitro translation of poly(A)+ mRNa from rat lung, the primary translation products of glycoprotein(s) A were identified as a charge train of five proteins of 26 kDa (pI 4.6–5.0), the predominant forms being the more acidic members (pI < 4.8). Inhibition of acetylation during in vitro translationof rat lung poly(A) mRNA resulted in a predominance of the more basic isoforms (pI ≥ 4.8). Intracellular forms of glycoprotein(s) A were immunoprecipitated from rat Type II epithelial cells after treatment with tunicamycin or after deglycosylation with endoglycosidase H. Five intracellular precursors consisting primarily of acidic members of the charge train were identified, this being consistent with the intracellular acetylation of the protein. In contrast, canine glycoprotein(s) A translation products consisted of only three proteins of 26 kDa (pI 4.8–5.0), in which most of the radiolabel was concentrated in the more basic components. Acetylation may account for some, but not all, of the charge heterogeneity in the primary translation products and processed forms of surfactant-associated glycoprotein(s) A in the rat.  相似文献   

20.
Plastocyanin and cytochrome c-553 are two functionally equivalent electron carriers in the photosynthetic chain of cyanobacteria. Microcystis aeruginosa, a unicellular cyanobacterium which grows well at a high pH (8.6) and which was not known to possess plastocyanin, has been studied for its ability to synthesize plastocyanin in culture media with and without Cu. In the absence of Cu, an acidic cytochrome c-553 alone was isolated. With the inclusion of 2 microM Cu, cytochrome c-553 synthesis was partially suppressed and an acidic plastocyanin was isolated. A newly developed procedure, using high concentrations of ammonium sulfate to fractionate water-soluble proteins on Sephacryl S-200 was successfully used to isolate and concentrate the plastocyanin, thus allowing it to be further purified to homogeneity. This protein has an isoelectric point of 4.8 which is similar to the pI value reported for other acidic plastocyanins from higher plants and green algae. Its N-terminal sequence of the first 15 amino acids has been determined; 9 of these amino acids are identical to those in the sequence of the basic plastocyanin from Anabaena variabilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号