首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.L. Zimmermann  A.W. Rutherford 《BBA》1984,767(1):160-167
The light-induced EPR multiline signal is studied in O2-evolving PS II membranes. The following results are reported: (1) Its amplitude is shown to oscillate with a period of 4, with respect to the number of flashes given at room temperature (maxima on the first and fifth flashes). (2) Glycerol enhances the signal intensity. This effect is shown to come from changes in relaxation properties rather than an increase in spin concentration. (3) Deactivation experiments clearly indicate an association with the S2 state of the water-oxidizing enzyme. A signal at g = 4.1 with a linewidth of 360 G is also reported and it is suggested that this arises from an intermediate donor between the S states and the reaction centre. This suggestion is based on the following observations: (1) The g = 4.1 signal is formed by illumination at 200 K and not by flash excitation at room temperature, suggesting that it arises from an intermediate unstable under physiological conditions. (2) The formation of the g = 4.1 signal at 200 K does not occur in the presence of DCMU, indicating that more than one turnover is required for its maximum formation. (3) The g = 4.1 signal decreases in the dark at 220 K probably by recombination with Q?AFe. This recombination occurs before the multiline signal decreases, indicating that the g = 4.1 species is less stable than S2. (4) At short times, the decay of the g = 4.1 signal corresponds with a slight increase in the multiline S2 signal, suggesting that the loss of the g = 4.1 signal results in the disappearance of a magnetic interaction which diminishes the multiline signal intensity. (5) Tris-washed PS II membranes illuminated at 200 K do not exhibit the signal.  相似文献   

2.
G.H. Krause 《BBA》1973,292(3):715-728
Certain long-term fluorescence phenomena observed in intact leaves of higher plants and in isolated chloroplasts show a reverse relationship to light-induced absorbance changes at 535 nm (“chloroplast shrinkage”).

1. 1. In isolated chloroplasts with intact envelopes strong fluorescence quenching upon prolonged illumination with red light is accompanied by an absorbance increase. Both effects are reversed by uncoupling with cyclohexylammonium chloride.

2. 2. The fluorescence quenching is reversed in the dark with kinetics very similar to those of the dark decay of chloroplast shrinkage.

3. 3. In intact leaves under strong illumination with red light in CO2-free air a low level of variable fluorescence and a strong shrinkage response are observed. Carbon dioxide was found to increase fluorescence and to inhibit shrinkage.

4. 4. Under nitrogen, CO2 caused fluorescence quenching and shrinkage increase at low concentrations. At higher CO2 levels fluorescence was increased and shrinkage decreased.

5. 5. In the presence of CO2, the steady-state yield of fluorescence was lower under nitrogen than under air, whereas chloroplast shrinkage was stimulated in nitrogen and suppressed in air.

6. 6. These results demonstrate that the fluorescence yield does not only depend on the redox state of the quencher Q, but to a large degree also on the high-energy state of the thylakoid system associated with photophosphorylation.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea  相似文献   


3.
The spectra of the absorbance changes due to the turnover of the so-called S-states of the oxygen-evolving apparatus were determined. The changes were induced by a series of saturating flashes in dark-adapted Photosystem II preparations, isolated from spinach chloroplasts. The electron acceptor was 2,5-dichloro-p-benzoquinone. The fraction of System II centers involved in each S-state transition on each flash was calculated from the oscillation pattern of the 1 ms absorbance transient which accompanies oxygen release. The difference spectrum associated with each S-state transition was then calculated from the observed flash-induced difference spectra. The spectra were found to contain a contribution by electron transfer at the acceptor side, which oscillated during the flash series approximately with a periodicity of two and was apparently modulated to some extent by the redox state of the donor side. At the donor side, the S0 → S1, S1 → S2 and S2 → S3 transitions were all three accompanied by the same absorbance difference spectrum, attributed previously to an oxidation of Mn(III) to Mn(IV) (Dekker, J.P., Van Gorkom, H.J., Brok, M. and Ouwehand, L. (1984) Biochim. Biophys. Acta 764, 301–309). It is concluded that each of these S-state transitions involves the oxidation of an Mn(III) to Mn(IV). The spectrum and amplitude of the millisecond transient were in agreement with its assignment to the reduction of the oxidized secondary donor Z+ and the three Mn(IV) ions.  相似文献   

4.
The electron donation to Chl a+II has been studied by measurement of absorbance changes at 824 nm under repetitive excitation conditions. For untreated inside-out thylakoids the electron donation was dominated by 35 and 220 ns kinetics. After salt-washing, both oxygen-evolution and nanosecond phases decreased drastically with corresponding increase in the microsecond time range. On addition of a purified 23 kDa protein, a restoration of the nanosecond phases up to 75% of the orginal level was obtained concomitant with a corresponding restoration of oxygen evolution. The results are consistent with a function of the 23 kDa protein at the oxidizing side of Photosystem II and that the nanosecond donation to Chl-a+II is coupled to the natural path of electrons from water.  相似文献   

5.
Alain Boussac  Anne-Lise Etienne 《BBA》1982,682(2):281-288
Tris-washed chloroplasts were submitted to saturating short flashes, and then rapidly mixed with dichlorophenyldimethylurea (DCMU). The amount of singly reduced secondary acceptor was estimated from the DCMU-induced increase in fluorescence, caused by the reverse electron flow from secondary to primary acceptor. The back-transfer from the singly reduced secondary acceptor to the primary acceptor Q induced by DCMU addition affects only a part (60%) of the variable fluorescence (ΔFmax). As previously shown, the quenchers involved in this phenomenon, ‘B-type’ quenchers, are different from those controlling the complementary part of the fluorescence, the non-B-type. In this report, we show that at pH 8.5 in the B-type systems, there exist two kinds of secondary electron acceptors: B, a two-electron acceptor, the corresponding Q accounting for 40% of the variable fluorescence; B′, a one-electron acceptor, the corresponding Q accounting for 20% of the variable fluorescence. The lifetimes of B? and B′? in the absence of DCMU are 40 and 1 s, respectively. The primary acceptors of the B and B′ systems can be considered as corresponding to the Q1s defined previously (Joliot, P. and Joliot, A. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoynoglou, G., ed.), pp. 885–899, Balaban International Science Services, Philadelphia). The B′ centers seems to be equivalent to the Qβ centers as defined by other workers (Van Gorkom, H.J., Thielen, A.P.G.M. and Gorren, A.C.F. (1982) in The Function of Quinones in Energy Conserving Systems (Trumpower, B.L., ed.), Academic Press, New York, in the press).  相似文献   

6.
E.S. Canellakis  G. Akoyunoglou 《BBA》1976,440(1):163-175
Spinach chloroplasts exposed to iodide can be washed free of the bulk of the iodide. In the presence of lactoperoxidase and H2O2, iodide can be introduced into chloroplasts in high amounts and in non diffusible forms. The resultant particles, which have been named iodochloroplasts, extrude their iodide upon stimulation by light. The form and the amount of extruded iodide bears a definite relationship to the amount of incident light. A flash of marginally effective light is additive to the next such flash even after a lapse of 10 min of darkness. These and other properties of iodochloroplasts may make them of great use in the study of intermediate reactions of photosynthesis.  相似文献   

7.
Marie-José Delrieu 《BBA》1984,767(2):304-313
Treatments such as trypsinization (50 μg/ml per mg Chl for 1 h), osmotic shock of the chloroplasts or mild heating altered the oxygen evolution in such a way that the properties of the Photosystem II were simplified. After these treatments, the damping of the oscillation pattern of O2 yields induced by a flash series remained the same, irrespective of the level of inhibition induced by the treatment. This damping did not decrease with increasing flash energy, as observed in untreated chloroplasts. The light saturation curve of the S2 → S3 transition of the O2 evolving system no more exhibited the slow-increasing phase at high flash energy observed under normal conditions. The kinetic properties of the O2-evolving system were also simplified. After the treatments cited above, deactivation of S2 and S3 were identical and accelerated with respect to untreated chloroplasts. Turnover kinetics of the transitions S1 → S2 and S2 → S3 were also similar and simpler without a lag for S2 → S3. These results indicate that the treatments mentioned above disconnect one donor from the O2-evolving complex. This donor, under normal conditions, contributes to the increase of the quantum yield of the transition S2 → S3 at high flash energy. This donor is here denoted by D. Our results are in agreement with the following working hypothesis: the large miss, observed on the S2 → S3 transition without any contribution of the donor D, may be due to the fact that the system needs a conformation change of the O2-evolving complex in the S2 state, so that the main donor Y can oxidize the second H2O molecule in the water-splitting complex. In the inactive state corresponding to the absence of a conformation change, the donor D, being different in configuration, is likely to oxidize the S2 state into an S3 state at high light intensity.  相似文献   

8.
9.
Plant materials (intact leaves, chloroplasts or subchloroplast particles) preilluminated at a low temperature (e.g. −60°C) were rapidly cooled to −196°C and then the luminescence emitted from the sample on raising the temperature was measured as a function of temperature, by means of a sensitive photo-electron counting technique. Mature spinach leaves showed five luminescence bands at different temperatures which were denoted as Zv, A, B1, B2 and C bands. The A, B1, B2 and C bands appeared at constant temperatures, −10, +25, +40 and +55°C, respectively, being independent of the illumination temperature, but the Zv band appeared at a variable temperature slightly higher than the illumination temperature. The B1 and B2 bands were absent in the thermoluminescence profiles of samples devoid of the oxygenevolving activity, such as heat-treated spinach leaves, wheat leaves greened under intermittent illumination and photosystem-II particles prepared with Triton X-100. It was deduced that these luminescence bands arise from the energy stored by the electron flow in photosystem II to evolve oxygen, and other bands were ascribed to charge-separation in some other sites not related to the oxygen evolving system.  相似文献   

10.
B.G. De Grooth  H.J. Van Gorkom 《BBA》1981,635(3):445-456
An electric field pulse was applied to a suspension of osmotically swollen spinach chloroplasts after illumination with a saturating flash in the presence of DCMU. In addition to the stimulation of delayed fluorescence by the electric field, discovered by Arnold and Azzi (Arnold, W.A. and Azzi, R. (1971) Photochem. Photobiol. 14, 233–240) a sudden drop in fluorescence yield was observed. The kinetics of this fluorescence change were identical to those of the integrated delayed fluorescence emission induced by the pulse. The S-state dependence of the stimulated emission was very similar to that of the normal luminescence. We assume that the membrane potential generated by the pulse changes the activation energy for the back reaction in Photosystem II. On this basis, and making use of data we obtained earlier from electrochromic absorbance changes induced by the pulse, the kinetics of the field-induced prompt and delayed fluorescence changes, and also the amplitude of the fluorescence decrease, which was about 12% for a nearly saturating pulse, are explained. Our results indicate that in those reaction centers where a decrease of the activation energy occurs the effect of a pulse can be quite spectacular: the back reaction, which normally takes seconds, is completed in a few hundred microseconds when a sufficiently strong pulse is applied. Measurements of the polarization of the stimulated luminescence supported the interpretation given above.Only 2.8% of the back reaction was found to proceed via transition of reexcited chlorophyll to the ground state, both during the field pulse and in the absence of the field.  相似文献   

11.
Yung-Sing Li  Shiow-Hwey Ueng  Bi-Yu Lin 《BBA》1981,637(3):433-438
The transient fluorescence quenching induced by the addition of a small amount of an oxidant to illuminated chloroplasts can be used to estimate the rate of electron transported by the oxidant. Using this technique, it is found that the reduction of plastoquinone by the primary acceptor of Photosystem II is sensitive to salt depletion.  相似文献   

12.
13.
The role of Cl? in the electron transfer reactions of the oxidizing side of Photosystem II (PS II) has been studied by measuring the fluorescence yield changes corresponding to the reduction of P+-680, the PS II reaction center chlorophyll, by the secondary PS II donor, Z. In Cl?-depleted chloroplasts, a rapid rise in fluorescence yield was observed following the first and second flashes, but not during the third or subsequent flashes. These results indicate that there exists an additional endogenous electron donor beyond P-680 and Z in Cl?-depleted systems. In contrast, the terminal endogenous donor on the oxidizing side of PS II in Tris-washed preparations has previously been shown to be Z, the component giving rise to EPR signals IIf and IIvf. The rate of reduction of P+-680 in the Cl?-depleted chloroplasts was as rapid as that measured in uninhibited systems, within the time resolution of our instrument. Again, this is in contrast to Tris-washed preparations in which a dramatic decrease in the rate if this reaction has been previously reported. We have also carried out a preliminary study on the rate of rereduction of Z+ in the Cl?-depleted system. Under steady-state conditions, the reduction half-time of Z+ in uninhibited systems was about 450 μs, while in the Cl?-depleted chloroplasts, the reduction of Z+ was biphasic, one phase with a half-time of about 120 ms, and a slower phase with a half-time of several seconds. The appearance of the quenching state due to P+-680 observed following the third flash on excitation of Cl?-depleted chloroplasts was delayed by two flashed when low concentrations of NH2OH (20–50 μM) were included in the medium. Hydrazine at somewhat higher concentrations showed the same effect. This is taken to indicate that the reactions leading to PS II oxidation of NH2OH or NH2NH2 are uninhibited by Cl? depletion. Addition of NH2OH at low concentrations to Tris-washed chloroplasts did not alter the pattern of the fluorescence yield, indicating that the reactions leading to the NH2OH oxidation present in Cl?-depleted systems are absent following Tris inhibition. The results are discussed in terms of an inhibition by Cl? depletion of the reactions of the oxygen-evolving complex. It is suggested that no intermediary redox couple exists between the oxygen-evolving complex and Z, and that Z+ is reduced directly by Mn of the complex. In terms of the S-state model, Cl? depletion appears to inhibit the advancement of the mechanism beyond S2, but not to inhibit the transitions from S0 to S1, or from S1 to S2.  相似文献   

14.
Shigeru Itoh  Mitsuo Nishimura 《BBA》1977,460(3):381-392
Changes in the rates of dark oxidation and reduction of the primary electron acceptor of System II by added oxidant and reductant were investigated by measuring the induction of chlorophyll fluorescence under moderate actinic light in 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-inhibited chloroplasts at pH values between 3.6 and 9.5. It was found that:

1. (1) The rate of dark oxidation of photoreduced primary acceptor was very slow at all the pH values tested without added electron acceptor.

2. (2) The rate was accelerated by the addition of ferricyanide in the whole pH range. It was dependent approximately on the 0.8th power of the ferricyanide concentration.

3. (3) The rate constant for the oxidation of the primary acceptor by ferricyanide was pH-dependent and became high at low pH. The value at pH 3.6 was more than 100 times that at pH 7.8.

4. (4) The pH-dependent change in the rate constant was almost reversible when the chloroplasts were suspended at the original pH after a large pH change (acid treatment).

5. (5) An addition of carbonylcyanide m-chlorophenylhydrazone or heavy metal chelators had little effect on the rate of dark oxidation of the primary acceptor by ferricyanide.

6. (6) The dark reduction of the primary acceptor by sodium dithionite also became faster at low pH.

From these results it is concluded that at low pH the primary acceptor of System II becomes accessible to the added hydrophilic reagents even in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea.  相似文献   


15.
16.
1. Chloroplasts have been preilluminated by a sequence of n short saturating flashes immediately before alkalinization to pH 9.3, and brought back 2 min later to pH 7.8. The assay of Photosystem II activity through dichlorophenolindophenol photoreduction, oxygen evolution, fluorescence induction, shows that part of the centers is inactivated and that this part depends on the number of preilluminating flashes (maximum inhibition after one flash) in a way which suggests identification of state S2 as the target for alkaline inactivation.2. As shown by Reimer and Trebst ((1975) Biochem. Physiol. Pflanz. 168, 225–232) the inactivation necessitates the presence of gramicidin, which shows that the sensitive site is on the internal side of the thylakoid membrane.3. The electron flow through inactivated Photosystem II is restored by artificial donor addition (diphenylcarbazide or hydroxylamine); this suggests that the water-splitting enzyme itself is blocked. The inactivation is accompanied by a solubilization of bound Mn2+ and by the occurrence of EPR Signal II “fast”.4. Glutaraldehyde fixation before the treatment does not prevent the inactivation which thus does not seem to involve a protein structural change.  相似文献   

17.
J. Barber  G.F.W. Searle  C.J. Tredwell 《BBA》1978,501(2):174-182
The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3′,4′-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a picosecond time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp ?At12, where A was found to be 0.052 ps?12, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence decay law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.  相似文献   

18.
Rita Barr  Frederick L. Crane 《BBA》1980,591(1):127-134
Two possible 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive sites were found in PS II of spinach chloroplasts, depending on the pH of the assay medium used. The low site (pH 6) can be inhibited by certain quinolines, such as 8-hydroxyquinoline at concentrations less than 50 μM. The high pH site (pH 8) can be inhibited by disodium cyanamide, folic acid, or 5,6-benzoquinoline at concentrations from 50 μM to 5 mM. With the exception of orthophenanthroline, which stimulates the high pH site but does not show much inhibition at low pH, all other inhibitors gave opposite effects at the pH values used, i.e., they stimulated at low pH or inhibited at high pH, or vice versa. Several mechanisms for the observed effects are discussed.  相似文献   

19.
The fluorescence yield of chloroplasts reflects the redox state of the electron acceptor of the Photosystem II reaction center, with increasing yield as the acceptor is reduced. Chemical reductive titrations of fluorescence yield in chloroplasts at room temperature indicate two distinct midpoint potentials, suggesting the possibility of Photosystem II electron acceptor heterogeneity. We have carried out a potentiometric titration of the fluorescence decay kinetics in spinach chloroplasts using a continuous mode-locked dye laser with low-intensity excitation pulses and a picosecond-resolution single-photon timing system. At all potentials the fluorescence decay is best described by three exponential components. As the potential is lowered, the slow phase changes 30-fold in yield with two distinct midpoint potentials, accompanied by a modest (3-fold) increase in the lifetime. The titration curve for the slow component of the fluorescence decay of spinach chloroplasts is best characterized by two single-electron redox reactions with midpoint potentials at pH 8.0 of +119 and ?350 mV, with corresponding relative contributions to the fluorescence yield of 49 and 51%, respectively. There is little change in the fast and middle components of the fluorescence decay. We found that the oxidized form of the redox mediator 2-hydroxy-1,4-naphthoquinone preferentially quenches the fluorescence, causing an anomalous decrease in the apparent midpoint of the high-potential transition. This effect accounts for a significant difference between the midpoint potentials that we observe and some of those previously reported. The selective effect of reduction potentials on particular fluorescence decay components provides useful information about the organization and distribution of the Photosystem II electron acceptor.  相似文献   

20.
Peter Horton 《BBA》1981,635(1):105-110
The effect of alteration of redox potential on the kinetics of fluorescence induction in pea chloroplasts has been investigated. Potentiometric titration of the initial (Fi) level of fluorescence recorded upon shutter opening gave a two component curve, with Em(7) at ?20 mV and ?275 mV, almost, identical to results obtained using continuous low intensity illumination (Horton, P. and Croze, E. (1979) Biochim. Biophys. Acta 545, 188–201). The slow or tail phase of induction observed in the presence of DCMU can be eliminated by poising the redox potential at approx. 0 to +50 mV. At this potential Fi was increased by less than 10% and the higher potential quencher described above was only marginally reduced. The disappearance of the slow phase titrated as an n = 1 component with an Em(7) of +120 mV. Therefore it seems unlikely that the slow phase of fluorescence induction is due to photoreduction of the ?20 mV quencher. These results are discussed with reference to current ideas concerning heterogeneity on the acceptor side of Photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号