首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Second derivative spectroscopy, computer curve analysis and Stepanov's equation show that the absorbance and fluorescence spectra of primary electron donor in reaction center of Rhodopseudomonas sphaeroides are splitting each into two asymmetric Gaussian components. Their absorption maxima at -196 degrees are 880 and 896 nm and emission maxima-906 and 923 nm, respectively. The absorption spectrum of Bchl-800 splits in the near infrared region into two bands with maxima at 790 and 803 nm. These components are ascribed to an exciton coupling in the two dimers of bacteriochlorophyll in the reaction center. The Qy transition moments of the two bacteriochlorophyll molecules of primary electron donor make an angle of 110 degrees and the angle between two Qy transitions of the pigment in Bchl-800 dimer is 150 degrees. The distance between the centers of chromophores in the dimers is estimated to be 8-11 A.  相似文献   

2.
Ted Mar  Gabriel Gingras 《BBA》1984,765(2):125-132
Polarization measurements of light-induced absorption changes in photoreaction center prepared from Rhodospirillum rubrum indicate that the 870 nm band is most likely due to a single transition dipole. The 800 nm band appears to be formed by transition dipoles with at least three different orientations. In photoreaction center from strain G9, none of the transition dipoles of the 800 nm band appears to form an angle larger than 70° with the 870 nm transition dipole.  相似文献   

3.
G. Paillotin  A. Vermeglio  J. Breton 《BBA》1979,545(2):249-264
Whole cells of Rhodopseudomonas viridis were oriented in a magnetic field. The degree of orientation of the cells was determined by using a photoselection technique. In order to deduce the orientation of the antennae and chromophores of the reaction centers with respect to the membrane plane, we performed linear dichroism measurements of absolute spectra and light induced difference spectra linked to states P+I and PI? on oriented cells. These measurements lead to the following conclusions:The antennae bacteriochlorophyll molecular plane is nearly perpendicular to the membrane. The Qy and Qx transitions moments of these molecules make respectively angles of 20 and 70°ith the membrane plane. The antenna carotenoid molecules make an angle of 45°ith the membrane.The primary electron donor possesses two transition moments centered respectively at 970 and 850 nm. The 970 nm transition moment is parallel to the membrane plane, the 850 nm transition is tilted out of the plane. Upon photooxidation of this primary electron donor, a monomer-like absorption band appears at 805 nm. Its transition makes an angle smaller than 25° with the membrane. The photooxidation of the dimer also induces an absorption band shift for the two other bacteriochlorophyll molecules of the reaction center. The absorption band shifts of the two bacteriochlorophyll molecules occur in opposite direction.One bacteriopheophytin molecule is photoreduced in state PI?. This photoreduction induces an absorption band shift for only one bacteriochlorophyll molecule. Finally, the geometry of the dimeric primary donor seems to be affected by the presence of a negative charge in the reaction center.  相似文献   

4.
High-field electron paramagnetic resonance (HF EPR) has been employed to investigate the primary electron donor electronic structure of Blastochloris viridis heterodimer mutant reaction centers (RCs). In these mutants the amino acid substitution His(M200)Leu or His(L173)Leu eliminates a ligand to the primary electron donor, resulting in the loss of a magnesium in one of the constituent bacteriochlorophylls (BChl). Thus, the native BChl/BChl homodimer primary donor is converted into a BChl/bacteriopheophytin (BPhe) heterodimer. The heterodimer primary donor radical in chemically oxidized RCs exhibits a broadened EPR line indicating a highly asymmetric distribution of the unpaired electron over both dimer constituents. Observed triplet state EPR signals confirm localization of the excitation on the BChl half of the heterodimer primary donor. Theoretical simulation of the triplet EPR lineshapes clearly shows that, in the case of mutants, triplet states are formed by an intersystem crossing mechanism in contrast to the radical pair mechanism in wild type RCs. Photooxidation of the mutant RCs results in formation of a BPhe anion radical within the heterodimer pair. The accumulation of an intradimer BPhe anion is caused by the substantial loss of interaction between constituents of the heterodimer primary donor along with an increase in the reduction potential of the heterodimer primary donor D/D+ couple. This allows oxidation of the cytochrome even at cryogenic temperatures and reduction of each constituent of the heterodimer primary donor individually. Despite a low yield of primary donor radicals, the enhancement of the semiquinone-iron pair EPR signals in these mutants indicates the presence of kinetically viable electron donors.  相似文献   

5.
The increase in the rate of the primary back reaction on cooling the photoreaction center from Rhodospirillum rubrum was interpreted in terms of a model in which the peculiar temperature dependence of the rate results from a phase transition involving water. The primary back reaction is defined as the return of the electron from the reduced primary ubiquinone to the oxidized bacteriochlorophyll molecules following illumination. The dye 8-anilino-1-naphthalene sulfonate was used to detect the state of the water solvent as it transforms on cooling from a liquid to a solid glass. We inferred from studies with air-dried films of photoreaction center that the water which may be responsible for the unusual temperature dependence of the rate of the primary back reaction is not on the surface but is bound within the photoreaction center protein.  相似文献   

6.
Ted Mar  Gabriel Gingras 《BBA》1984,764(1):86-92
The circular dichroism spectra of oriented and unoriented photoreaction centers of Rhodospirillum rubrum are compared. Orientation is achieved by pressing photoreaction center suspended in polyacrylamide gel. The biphasic bands at 870 and 810 nm and at 630 and 600 nm undergo a rotatory strength decrease when measured in the direction of the pressure, but not when measured in the direction normal to the pressure. Such a decrease in oriented photoreaction center is consistent with the model according to which these bands are dimer exciton bands of the special pair bacteriochlorophyll.  相似文献   

7.
The primary electron donor (D) plays a prominent role in electron transfer reactions in the primary processes of photosynthesis. In purple photosynthetic bacteria D is a dimer of bacteriochlorophyll molecules. Investigations on its electronic structure using EPR and ENDOR (electron nuclear double resonance) methods are summarized, focussing on results obtained in the last six years. These encompass studies on the cation radical (D+·) of mutants in which the immediate environment of D is modified through mutagenesis, particularly hydrogen bond and heterodimer mutants. Models using these results to describe the electronic interaction of the dimer halves are discussed. Also, High-Field (95 GHz) EPR to obtain the G-tensor of D+· is addressed. Furthermore, ENDOR on the photoexcited triplet state of D (DT), which in some aspects could serve as a model for the excited singlet state, are discussed. Different approaches towards correlating the electronic structure with function, in particular with the rates of electron transfer reactions, are described.  相似文献   

8.
We study sequential charge transfer within a chain of four heme cofactors located in the c-type cytochrome subunit of the photoreaction center of Rhodopseudomonas viridis from a theoretical perspective. Molecular dynamics simulations of the thermodynamic integration type are used to compute two key energies of Marcus' theory of charge transfer, the driving force ?G and the reorganization energy λ. Due to the small exposure of the cofactors to the solvent and to charged amino acids, the outer sphere contribution to the reorganization energy almost vanishes. Interheme effective electronic couplings are estimated using ab initio wave functions and a well-parameterized semiempirical scheme for long-range interactions. From the resulting charge transfer rates, we conclude that at most the two heme molecules closest to the membrane participate in a fast recharging of the photoreaction center, whereas the remaining hemes are likely to have a different function, such as intermediate electron storage. Finally, we suggest means to verify or falsify this hypothesis.  相似文献   

9.
Reaction center (RC) complexes isolated from a Zn-bacteriochlorophyll (BChl) a-containing purple bacterium, Acidiphilium rubrum, were characterized by absorption, circular dichroism, and magnetic circular dichroism (MCD) spectroscopy. The oxidized-minus-reduced difference spectra indicated that, in this RC, the Zn-BChl a is the primary electron donor. The molecular structure of the donor was examined by measuring the ratio of the MCD intensity of the Faraday B-term (B) to the dipole strength (D). In the Q(y) region, B/D for the donor was about half those of bacteriopheophytin a and the accessory Zn-BChl a, indicating that the primary electron donor is a dimer. The magnitude of bleach of the Q(x) band was half that observed in Rhodobacter sphaeroides, suggesting the cation is localized on a single Zn-Bchl a. The absorption intensity of the higher-energy Q(y) exciton band was approximately 28% of that of the lower-energy band, and the exciton splitting was approximately 570 cm(-1), smaller than that in Rb. sphaeroides. These results indicate that, in A. rubrum, the primary electron donor is a Zn-BChl a dimer but that the interaction between the two molecules is rather weak. On the basis of these results, an adaptive strategy for changes in BChl a species is discussed from an evolutionary perspective.  相似文献   

10.
Ted Mar  Rafael Picorel  Gabriel Gingras 《BBA》1982,682(3):354-363
The aim of this work was to explain the relatively fast growth of a mutant of Rhodospirillum rubrum (F24.1) which contains 7–8% of an apparently normal photoreaction center. We explored the double hypothesis that the size of its photosynthetic unit is larger than that of the wild type and that its electron-transport chain is organized in a network rather than in isolated loops. The first feature would allow faster growth under less than saturating light intensities and the second would allow faster maximal electron fluxes than would be predicted from the photoreaction center content. With respect to the first possibility, measurements of absorbance changes at 793 nm induced by short flashes of increasing intensity indicate that the photosynthetic unit of strain F24.1 is 5.6-fold larger than that of strain S1. The second possibility was verified by measuring relative electron fluxes at the photoreaction center in the two strains. This was established in the steady state from the amount of primary donor oxidized by a continuous light beam of increasing intensity. This electron flux was found to be about 70% as high in strain F24.1 as in strain S1. A more detailed study of the electron-transport chain indicated that cytochrome c2 is by far the main secondary electron donor in strain F24.1. No evidence could be obtained for the existence of another secondary donor in that strain. The mole ratio of cytochrome c2 to photoreaction center is about 6 in strain F24.1 as conpared to about 0.5 in strain S1. In strain 24.1, the pool of secondary donor appears to be collectively involved in the reduction of the oxidized primary donor. The replacement time at the photoreaction center of a first equivalent of oxidized cytochrome c2 by a second equivalent of reduced cytochrome c2 is less than or equal to 0.2 ms. The effect of the photoreaction center content on the size of the photosynthetic unit is discussed in terms of the different models proposed for the organisation of the photosynthetic unit. We propose that the electron-transport chain is organized in a network, perhaps by virtue of the lateral mobility of some of the electron carriers such as ubiquinone and cytochrome c2.  相似文献   

11.
For a model system consisting of a bacteriochlorophyll dimer (P) and a primary quinone with the nearest environment (QA), which are the electron donor and acceptor in the recombination reaction in the Rhodobacter spheroides reaction center, the energies of states P+Q A ? and PQA have been calculated at several stable conformations of QA that differ in the positions of the proton involved in the hydrogen bond. It is shown that the position of the proton has a considerable influence on the energy of vertical transition P+Q A ? → PQA.  相似文献   

12.
High-pressure studies on the photochemical reaction center from the photosynthetic bacterium Rhodobacter sphaeroides, strain R26.1, shows that, up to 0.6 GPa, this carotenoid-less membrane protein does not loose its three-dimensional structure at room temperature. However, as evidenced by Fourier-transform preresonance Raman and electronic absorption spectra, between the atmospheric pressure and 0.2 GPa, the structure of the bacterial reaction center experiences a number of local reorganizations in the binding site of the primary electron donor. Above that value, the apparent compressibility of this membrane protein is inhomogeneous, being most noticeable in proximity to the bacteriopheophytin molecules. In this elevated pressure range, no more structural reorganization of the primary electron donor binding site can be observed. However, its electronic structure becomes dramatically perturbed, and the oscillator strength of its Q(y) electronic transition drops by nearly one order of magnitude. This effect is likely due to very small, pressure-induced changes in its dimeric structure.  相似文献   

13.
J Breton  E Nabedryk  W W Parson 《Biochemistry》1992,31(33):7503-7510
The primary electron donor in the reaction center of purple photosynthetic bacteria consists of a pair of bacteriochlorophylls (PL and PM). The oxidized dimer (P+) is expected to have an absorption band in the mid-IR, whose energy and dipole strength depend in part on the resonance interactions between the two bacteriochlorophylls. A broad absorption band with the predicted properties was found in a previously unexplored region of the spectrum, centered near 2600 cm-1 in reaction centers of Rhodobacter sphaeroides and several other species of bacteria that contain bacteriochlorophyll a, and near 2750 cm-1 in Rhodopseudomonas viridis. The band is not seen in the absorption spectrum of the monomeric bacteriochlorophyll cation in solution, and it is missing or much diminished in the reaction centers of bacterial mutants that have a bacteriopheophytin in place of either PL or PM. With the aid of a relatively simple quantum mechanical model, the measured transition energy and dipole strength of the band can be used to solve for the resonance interaction matrix element that causes an electron to move back and forth between PL and PM, and also for the energy difference between states in which a positive charge is localized on either PL or PM. (The absorption band can be viewed as representing a transition between supermolecular eigenstates that are obtained by mixing these basis states.) The values of the matrix element obtained in this way agree reasonably well with values calculated by using semiempirical atomic resonance integrals and the reaction center crystal structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
《BBA》1987,893(2):267-274
The D1-D2-cytochrome b-559 reaction center complex and the 47 kDa antenna chlorophyll protein isolated from spinach Photosystem II were characterized by means of low temperature absorption and fluorescence spectroscopy. The low temperature absorption spectrum of the D1-D2-cytochrome b-559 complex showed two bands in the Qy region located at 670 and 680 nm. On the basis of its absorption maximum and orientation the latter component may be attributed at least in part to P-680, the primary electron donor of Photosystem II. The 47 kDa antenna complex showed absorption bands at 660, 668 and 677 nm and a minor component at 690 nm. The latter transition appeared to be associated with the characteristic low temperature 695 nm fluorescence band of Photosystem II. The 695 nm emission band was absent in the D1-D2 complex, which indicates that it does not originate from the reaction center pheophytin, as earlier proposed. The transition dipole responsible for the main fluorescence at 684 nm from this complex had a parallel orientation with respect to the membrane plane in the native structure. The reaction center preparation contains two spectrally distinct carotenoids with different orientations.  相似文献   

15.
Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Interchromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states, and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography, in combination with predictions of transition energies and couplings in the chromophore site basis. We demonstrate that coarse-grained, excitonic, structural information in the form of projection angles between transition dipole moments can be obtained from the polarization-dependent, two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal, rather than the photon echo signal, is considered. This method provides an experimental link between atomic and electronic structure, and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, the energy transfer connecting two particular exciton states in the protein was isolated as the primary contributor to a crosspeak in the nonrephasing two-dimensional spectrum at 400 femtoseconds under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored polarization sequences to separate and monitor individual relaxation pathways.  相似文献   

16.
Fabio Pichierri 《Bio Systems》2011,103(2):132-137
We perform a quantum mechanical study of the peptides that are part of the LH2 complex from Rhodopseudomonas acidophila, a non-sulfur purple bacteria that has the ability of producing chemical energy from photosynthesis. The electronic structure calculations indicate that the transmembrane helices of these peptides are characterized by dipole moments with a magnitude of about 150 D. When the full nonamer assembly made of 18 peptides is considered, then a macrodipole of magnitude 806 D is built up from the vector sum of each monomer dipole. The macrodipole is oriented normal to the membrane plane and with the positive tip toward the cytoplasm thereby indicating that the electronic charge of the protein scaffold is polarized toward the periplasm. The results obtained here suggest that the asymmetric charge distribution of the protein scaffold contributes an anisotropic electrostatic environment which differentiates the absorption properties of the bacteriochlorophyll pigments, B800 and B850, embedded in the LH2 complex.  相似文献   

17.
The primary electron donor in the photosynthetic reaction center from purple bacteria is a bacteriochlorophyll dimer containing four conjugated carbonyl groups that may form hydrogen bonds with amino acid residues. Spectroscopic analyses of a set of mutant reaction centers confirm that hydrogen bonds can be formed between each of these carbonyl groups and histidine residues in the reaction center subunits. The addition of each hydrogen bond is correlated with an increase in the oxidation potential of the dimer, resulting in a 355-mV range in the midpoint potential. The resulting changes in the free-energy differences for several reactions involving the dimer are related to the electron transfer rates using the Marcus theory. These reactions include electron transfer from cytochrome c2 to the oxidized dimer, charge recombination from the primary electron acceptor quinone, and the initial forward electron transfer.  相似文献   

18.
Based on the structural analysis of photosystem II of Thermosynechococcus elongatus, a detailed calculation of optical properties of reaction-center (D1-D2) complexes is presented applying a theory developed previously. The calculations of absorption, linear dichroism, circular dichroism, fluorescence spectra, all at 6 K, and the temperature-dependence of the absorption spectrum are used to extract the local optical transition energies of the reaction-center pigments, the so-called site energies, from experimental data. The site energies are verified by calculations and comparison with seven additional independent experiments. Exciton relaxation and primary electron transfer in the reaction center are studied using the site energies. The calculations are used to interpret transient optical data. Evidence is provided for the accessory chlorophyll of the D1-branch as being the primary electron donor and the location of the triplet state at low temperatures.  相似文献   

19.
Linear dichroism measurements of reaction centers of Rhodopseudomonas sphaeroides in stretched gelatin films have yielded angles that various optical transition moments make with an axis of symmetry in the reaction center. Photoselection experiments have yielded angles that certain transition moments make with each other. We have combined these data so as to compute the orientations of the Qx and Qy transition moments of the two molecules of bacteriopheophytin and of the bacteriochlorophyll special pair (photochemical electron donor) in the reaction center. Orientations are expressed in spherical polar coordinates with the symmetry axis as the pole. We have also computed additional angles between pairs of transition moments. In this treatment we have assumed that the bacteriopheophytins are independent monomers with little or no exciton coupling.  相似文献   

20.
《Inorganica chimica acta》2006,359(9):3029-3041
The axial coordination of push–pull E-stilbazoles carrying electron donor or electron withdrawing groups with tetraphenylporphyrinates of Zn(II), Ru(II) and Os(II) does not produce any significant increase in second order NLO response, the exception being the E-stilbazole carrying the electron withdrawing CF3 group. The lack of an increase in the second order NLO response due to the polarising action on the E-stilbazole push–pull system, by the metal centres acting as Lewis acids, is attributed to the axial π backbonding of the metal atom to the E-stilbazole, such backbonding producing a screening effect that opposes σ donation. This effect becomes dominant when the E-stilbazole carries a strong electron withdrawing group. Thus, it appears that the metals in porphyrin complexes may behave in a dual way when they interact axially with soft π delocalised ligands, such as E-stilbazoles where σ acceptor or π donor properties prevail according to the nature of the E-stilbazole itself.Infrared, electronic spectra and dipole moments suggest both axial and equatorial dissipation of the electronic density located on the metal, via π backbonding processes which influence the Lewis acid behaviour of the metal centres.A particular crystal packing, with boxes formed by four porphyrinic moieties and with large empty channels within the boxes, appears to be characteristic of axially substituted tetraphenylporphyrinates, resulting in materials able to absorb gases and solvents in their void spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号