首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of salmon calcitonin with a number of phospholipids are studied by electron microscopy, circular dichroism and the leakage of carboxyfluorescein. At room temperature, calcitonin reacts strongly with dimyristoylphosphatidylglycerol and egg phosphatidic acid, while only moderate or no interaction is observed with several other phospholipids. The interaction is judged by the dissolution of the phospholipid dispersion and by electron microscopic observation and is in general concomitant with an increase in the helical content of the peptide. The electrostatic charge and the transition temperature of each of the phospholipids are important factors in determining the extent of reaction with salmon calcitonin. An exception is the sulphatide from bovine brain. The resulting morphology of the complex formed between salmon calcitonin and phosphatidic acid is quite different from that formed with phosphatidylglycerol. In the case of phosphatidylglycerol and most other negatively charged phospholipids, disc-shaped complexes are observed under the electron microscope by negative staining. The calcitonin- DMPG complexes are about 7 nm thick and their diameter increases with an increasing lipid-to-peptide ratio. In contrast, phosphatidic acids form spherical complexes with salmon calcitonin causing large multilamellar structures to spontaneously break-up into smaller particles of about 10 to 20 nm in diameter independent of the lipid-to-peptide ratio. The contrasting effects of salmon calcitonin on the morphology of these two phospholipids is explicable by consideration of the size of the lipid headgroup. Phosphatidic acid can accommodate the peptide without rupture of the bilayer, while the larger headgroup of phosphatidylglycerol requires the bilayer to rupture. This model is supported by studies of calcitonin-induced leakage of carboxyfluorescein from sonicated vesicles of 75% egg phosphatidylcholine and 25% either egg phosphatidic acid, egg phosphatidylglycerol or dimyristoylphosphatidylglycerol . There was a much greater increase in carboxyfluorescein leakage from phosphatidylglycerol-containing vesicles induced by salmon calcitonin demonstrating the greater ability of the peptide to rupture bilayers containing this phospholipid.  相似文献   

2.
The influence of membrane pH gradients on the transbilayer distribution of some common phospholipids has been investigated. We demonstrate that the transbilayer equilibrium of the acidic phospholipids egg phosphatidylglycerol (EPG) and egg phosphatidic acid (EPA) can be manipulated by membrane proton gradients, whereas phosphatidylethanolamine, a zwitterionic phospholipid, remains equally distributed between the inner and outer monolayers of large unilamellar vesicles (LUVs). Asymmetry of EPG is examined in detail and demonstrated by employing three independent techniques: ion-exchange chromatography, 13C NMR, and periodic acid oxidation of the (exterior) EPG headgroup. In the absence of a transmembrane pH gradient (delta pH) EPG is equally distributed between the outer and inner monolayers of LUVs. When vesicles composed of either egg phosphatidylcholine (EPC) or DOPC together with 5 mol % EPG are prepared with a transmembrane delta pH (inside basic, outside acidic), EPG equilibrates across the bilayer until 80-90% of the EPG is located in the inner monolayer. Reversing the pH gradient (inside acidic, outside basic) results in the opposite asymmetry. The rate at which EPG equilibrates across the membrane is temperature dependent. These observations are consistent with a mechanism in which the protonated (neutral) species of EPG is able to traverse the bilayer. Under these circumstances EPG would be expected to equilibrate across the bilayer in a manner that reflects the transmembrane proton gradient. A similar mechanism has been demonstrated to apply to simple lipids that exhibit weak acid or base characteristics [Hope, M. J., & Cullis, P. R. (1987) J. Biol. Chem 262, 4360-4366]  相似文献   

3.
The major coat protein of bacteriophage M13 was incorporated in mixed dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (80/20 w/w) vesicles probed with different spin-labeled phospholipids, labeled on the C-14 atom of the sn-2 chain. The specificity for a series of phospholipids was determined from a motionally restricted component seen in the electron spin resonance (ESR) spectra of vesicles with the coat protein incorporated. At 30 degrees C and pH 8, the fraction of motionally restricted phosphatidic acid spin-label is 0.36, 0.52, and 0.72 for lipid/protein ratios of 18, 14, and 9 mol/mol, respectively. The ESR spectra, analyzed by digital subtraction, resulted in a phospholipid preference following the pattern cardiolipin = phosphatidic acid greater than stearic acid = phosphatidylserine = phosphatidylglycerol greater than phosphatidylcholine = phosphatidylethanolamine. The specificities found are related to the composition of the target Escherichia coli cytoplasmic membrane.  相似文献   

4.
Neutron diffraction from oriented multibilayers has been used to study the bilayer interaction of the amphipathic peptide salmon calcitonin. Penetration of calcitonin into bilayers composed of dioleoylphosphatidylcholine increases with the addition of 15% (mol) of the anionic phospholipid dioleoylphosphatidylglycerol. Neutron scattering profiles of water distribution in stacked bilayers show a continuous band of deuterons across each bilayer, consistent with the suggestion that the hormone forms transbilayer alpha-helixes under these conditions. These experiments add to the growing body of data on the role of phosphatidylglycerol in bilayer insertion of protein helices and suggests a possible evolutionary history for calcitonin.  相似文献   

5.
The interactions of salmon calcitonin with glycosphingolipid sulfatide are studied by right angle light scattering from the lipid suspension, by the excimer to monomer ratio (E/M) of the fluorescence intensity of pyrene phosphatidylcholine and pyrene sulfatide and by the leakage of carboxyfluorescein. It was found that calcitonin strongly modified the structure of the sulfatide aggregate, as indicated by the light scattering determinations. At a lipid peptide ratio 100:1 (molar ratio) light scattering from the suspension was negligible, indicating the formation of peptide-sulfatide complexes with a structure different from that of the lipid aggregate. The interactions of calcitonin with sulfatide when the latter is a component of a bilayer were also evaluated. A specific calcitonin-membrane sulfatide interaction was demonstrated by determining the temperature-dependent E/M of pyrene phosphatidylcholine and pyrene sulfatide in dipalmitoyl phosphatidylcholine/sulfatide (80:20, molar ratio) liposomes. The E/M curves were modified by calcitonin only when the liposomes were labelled with fluorescent sulfatide which probes the sulfatide behavior in the membrane. Furthermore, the addition of calcitonin to the incubation medium of liposomes containing sulfatide promoted the release of vesicle entrapped carboxyfluorescein without disrupting the bilayer structure, the release being correlated with the amount of sulfatide in the bilayer and the calcitonin concentration in the medium.  相似文献   

6.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37°C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids.We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

7.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37 degrees C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids. We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

8.
According to the Chou-Fasman rules for predicting the secondary structures of proteins, the 12-20 portion of salmon calcitonin should adopt an alpha helical conformation. These residues would form an amphipathic helix and contribute to the solubilization of certain phospholipids by the peptide. Circular dichroism was used to assess the extent that peptide segments of salmon calcitonin fold into structures of higher helical content in the presence of dimyristoylphosphatidylglycerol, lysolecithin or sodium dodecyl sulfate. All of the segments studied are carboxyl terminal amides as is the native, intact, salmon calcitonin. Salmon calcitonin segments 11-23 or 12-23 form no more helical structure in the presence of lipids or detergents than does a segment comprising the hydrophilic carboxyl terminal residues 22-32 which is not predicted to adopt a helical conformation. Even a larger segment containing residues 12-32 does not exhibit a great increase in helical content in the presence of lipids or detergents, and it causes only a small broadening of the phase transition of dimyristoylphosphatidylglycerol. In contrast, a preparation with an equivalent molar ratio of dimyristoylphosphatidylglycerol to the salmon calcitonin segment 1-23 exhibits a very marked broadening of the phase transition, similar to what is found with the 32 amino acid native hormone. This amino terminal segment also adopts a conformation of higher helical content than even the intact hormone. This 1-23 segment is the only one studied that showed significant interaction with lipids, and it is also the only one which exhibited any hypocalcemic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The interaction of glucagon, human parathyroid hormone-(1-34)-peptide and salmon calcitonin with dimyristoylphosphatidylglycerol (DMPG) and with dimyristoylphosphatidylcholine (DMPC) was studied as a function of pH and temperature. The effect of lipid on the secondary structure of the peptide was assessed by circular dichroism and the effect of the peptide on the phase transition properties of the lipid was studied using differential scanning calorimetry. Some peptides interact more strongly with anionic than with zwitterionic phospholipids. This does not require an overall positive charge on the peptide. Increased thermal stability is observed in complexes formed between cationic peptides and anionic lipids. Particularly marked effects of glucagon and human parathyroid hormone-(1-34)-peptide on the phase transition properties of DMPG at pH 5 have been observed. The transition temperature is raised over 10 degrees C at a lipid/peptide molar ratio of less than 30:1 and the transition enthalpy is increased over 2-fold. These effects do not occur with any basic peptide and were not observed with metorphinamide, molluscan cardioexcitatory neuropeptide or myelin basic protein. The results demonstrate that certain peptides can affect the phase transition properties of lipids in a manner similar to divalent cations. The overall hydrophobicities of these peptides can be evaluated by their partitioning between aqueous and organic solvents. None of the above three peptide hormones partition into the organic phase. However, a closely related peptide, human calcitonin, does exhibit substantial partitioning into the organic phase. Nevertheless, human calcitonin has a weaker interaction with both DMPC and DMPG than does salmon calcitonin. The effects of human calcitonin on the phase transition of DMPC are qualitatively different from those of salmon calcitonin in that the human form more readily eliminates the pretransition but causes less change in the main transition. Like overall charge, overall hydrophobicity is not an overwhelming factor in determining the ability of peptides to interact with phospholipids but rather more specific interactions are required for strong complexes to form.  相似文献   

10.
Mobility of phospholipid hydrocarbons in the Escherichia coli B membrane fractions was studied by labeling phosphatidylethanolamine or phosphatidylglycerol in situ by biosynthetic incorporation of the spin label. For this purpose, CDP-diacylglycerol spin label was synthesized from phosphatidic acid spin label and cytidine 5'-phosphoromorpholidate and purified by thin-layer chromatography. DCP-diacylglycerol spin label was then incorporated into phospholipids biosynthetically. ESR spectra of these E. coli B membrane fractions showed that phosphatidylglycerol tended to interact with membrane proteins through the mediation of Mg2+, whereas phosphatidylethanolamine had less of this tendency and was more involved in the formation of the bulk of the bilayer continuum of the membrane. These conclusions were also supported by labeling membranes with exogenous spin-labeled phospholipids, although there was some indication that exogenous phospholipids were incorporated into sites different from the sites of incorporation of phospholipids newly synthesized in situ.  相似文献   

11.
A recently developed fluorimetric transfer assay (Somerharju, P., Brockerhoff, H. and Wirtz, K.W.A. (1981) Biochim. Biophys. Acta 649, 521–528) has been applied to study the substrate specificity and membrane binding of the phosphatidylinositol-transfer protein from bovine brain. The substrate specificity was investigated by measuring the rate of transfer, either directly or indirectly, for a series of phosphatidylinositol analogues which included phosphatidic acid, phosphatidylglycerol as well as three lipids obtained from yeast phosphatidylinositol by partial periodate oxidation and subsequent borohydride reduction. Phosphatidylglycerol and the oxidation products of phosphatidylinositol were transferred at about one tenth of the rate observed for phosphatidylinositol while phosphatidic acid was not transferred. It is concluded that an intact inositol moiety favours the formation of the putative transfer protein-phosphatidylinositol complex. In addition to phosphatidylinositol, the transfer protein also transfers phosphatidylcholine. In order to obtain information on the possible occurrence of two sites of interaction, vesicles consisting of either pure 1-acyl-2-parinaroylphosphatidylinositol or 1-acyl-2-parinaroylphosphatidylcholine were titrated with the protein. Binding of labeled phospholipid to the protein was represented by an increase of lipid fluorescence and found to be much more efficient for phosphatidylinositol than for phosphatidylcholine. This is interpreted to indicate that the protein contains an endogenous phosphatidylinositol molecule which can be easily replaced by exogenous phosphatidylinositol but not by phosphatidylcholine, a lipid with a lower affinity for this protein. Thus the binding sites for the two phospholipids are mutually exclusive, i.e. phosphatidylinositol and phosphatidylcholine cannot be bound to the protein simultaneously. Finally, the effect of acidic phospholipids on the transfer protein activity was studied either by varying the content of phosphatidic acid in the acceptor vesicles or by adding vesicles of pure acidic phospholipids to the normal assay system. The latter vesicles consisted of either phosphatidic acid, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol or cardiolipin. In both instances the transfer protein activity was inhibited, obviously through the enhanced association of the protein with the negatively charged vesicles. These findings strongly suggest that relatively nonspecific ionic forces rather than specific protein-phospholipid headgroup interactions contribute to the association of the phosphatidylinositol-transfer protein with membranes.  相似文献   

12.
A characterization of the structural alterations induced by melittin in model-membranes of dioleoylphosphatidic acid and egg phosphatidylglycerol is presented, based on the use of 31P-NMR, freeze-fracture electron microscopy and small angle X-ray scattering. In accordance with earlier findings on the cardiolipin-melittin system, melittin is found to have an inverted phase inducing effect on these negatively charged lipids, in contrast to the influence on zwitterionic phospholipids. In phosphatidic acid this is expressed in the formation of an HII phase; in phosphatidylglycerol a less ordered, non-lamellar structure with low water content is adopted.  相似文献   

13.
The peptide-induced fusion of neutral and acidic liposomes was studied in relation to the amphiphilicities evaluated by alpha-helical contents of peptides by means of a carboxyfluorescein leakage assay, light scattering, a membrane intermixing assay and electron microscopy. An amphipathic mother peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], and its derivatives, [Pro6]4(3) (1), [Pro2,6]4(3) (2), and [Pro2,6,10]4(3) (3), which have very similar hydrophobic moments, caused a leakage of contents from small unilamellar vesicles composed of egg yolk phosphatidylcholine and egg yolk phosphatidic acid (3:1). The abilities of the peptides to induce the fusion of the acidic liposomes increased with increasing alpha-helical content: in acidic liposomes the helical contents were in the order of 4(3) greater than 1 greater than 2 greater than 3 (Lee et al. (1989) Chem. Lett., 599-602). Electron microscopic data showed that 1 caused a transformation of the small unilamellar vesicles (20-50 nm in diameter) to large ones (100-300 nm). Based on the fact that these peptides have very similar hydrophobic moments despite of decreasing in the mean residue hydrophobicities to some extent, it was concluded that the abilities of the peptides to induce the fusion of liposomes depend on the extent of amphiphilic conformation evaluated by alpha-helical contents of the peptides in the presence of liposomes. For neutral liposomes of egg yolk phosphatidylcholine, all the proline-containing peptides showed no fusogenic ability but weak leakage abilities, suggesting that the charge interaction between the basic peptides and acidic phospholipid is an important factor to induce the perturbation and fusion of the bilayer.  相似文献   

14.
Cation-induced aggregation of acidic phospholipid vesicles consisting of dimyristoylphosphatidylglycerol (DMPG), dipalmitoylphosphatidylserine (DPPS), phosphatidylserine from bovine brain (brPS), and phosphatidylglycerol from egg yolk (eggPG) was studied. Significant differences were evident in the NaCl-induced aggregation of fully saturated and unsaturated acidic phospholipid vesicles. The threshold NaCl concentration of vesicle aggregation ([NaCl]Thr) for DPPS vesicles was 320 mM compared to 610 mM observed for brPS vesicles. For DMPG vesicles the [NaCl]Thr was 430 mM and no aggregation of eggPG vesicles could be observed upon addition of NaCl. The threshold CaCl2 concentrations of aggregation of DMPG and eggPG vesicles were 2.3 and 4.9 mM, respectively. The corresponding threshold CaCl2 concentrations for DPPS and brPS vesicles were 0.85 mM and 1.3 mM, respectively. The inclusion of cholesterol into vesicles attenuated NaCl- and CaCl2-induced aggregation of DMPG and DPPS vesicles. However, enhancement of aggregation by inclusion of cholesterol was observed in the case of NaCl-induced aggregation of brPS vesicles. It is concluded that cation mediated membrane-membrane interactions depend, in addition to polar headgroup structure, on the fatty acid composition of the phospholipids also.  相似文献   

15.
Purified Acetylcholine Receptor (AcChR) from Torpedo has been reconstituted at low (approximately 1:3500) and high (approximately 1:560) protein to phospholipid molar ratios into vesicles containing egg phosphatidylcholine, cholesterol, and different dimyristoyl phospholipids (dimyristoyl phosphatidylcholine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid) as probes to explore the effects of the protein on phospholipid organization by differential scanning calorimetry, infrared, and fluorescence spectroscopy. All the experimental results indicate that the presence of the AcChR protein, even at the lower protein to phospholipid molar ratio, directs lateral phase separation of the monoanionic phosphoryl form of the phosphatidic acid probe, causing the formation of specific phosphatidic acid-rich lipid domains that become segregated from the bulk lipids and whose extent (phosphatidic acid sequestered into the domain, out of the total population in the vesicle) is protein-dependent. Furthermore, fluorescence energy transfer using the protein tryptophan residues as energy donors and the fluorescence probes trans-parinaric acid or diphenylhexatriene as acceptors, establishes that the AcChR is included in the domain. Other dimyristoyl phospholipid probes (phosphatidylcholine, phosphatidylserine, phosphatidylglycerol) under identical conditions could not mimic the protein-induced domain formation observed with the phosphatidic acid probe and result in ideal mixing of all lipid components in the reconstituted vesicles. Likewise, in the absence of protein, all the phospholipid probes, including phosphatidic acid, exhibit ideal mixing behavior. Since phosphatidic acid and cholesterol have been implicated in functional modulation of the reconstituted AcChR, it is suggested that such a specific modulatory role could be mediated by domain segregation of the relevant lipid classes.  相似文献   

16.
The conformational and lipid binding properties of several calcitonin analogs were compared. These analogs were designed to have the central amphipathic helical region of salmon calcitonin and N- and C-terminal segments similar to human calcitonin. The various analogs differed from one another either by removal of Leu19 from this hybrid analog, replacement of Leu19 with Gly19 or having a carboxyl terminus more closely related to salmon calcitonin. It had been found that replacement of Leu19 with Gly19 caused a marked reduction in the hypocalemic activity of the analog. The ability of the analogs to form helical structures in the presence of dimyristoylphosphatidylglycerol as well as their ability to lower the enthalpy of the calorimetric phase transition of this phospholipid correlates well with the hypocalcemic potency of the peptide.  相似文献   

17.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

18.
The composition of membrane phospholipids during chloroplast biogenesis was studied. The maximal level of phosphatidic acid was observed in the membrane fraction of proplastids. Phosphatidylglycerol was found to be the most abundant phospholipid component of grana thylakoids. The evidence from the in vivo experiments indicates that phosphatidic acid and phosphatidylglycerol incorporate the 32P label at a high rate at all stages of the chloroplast biogenesis. It is concluded that plastids are the site of the phosphatidylglycerol biosynthesis in the plant cell.  相似文献   

19.
Using large (5-10 microns) vesicles formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera, and digital image processor, we examined the effects of membrane proteins on phospholipid domain formation. In vesicles composed of phosphatidic acid and phosphatidylcholine, incubation with cytochrome c induced the reorganization of phospholipids into large phosphatidic acid-enriched domains with the exclusion of phosphatidylcholine. Cytochrome c binding was demonstrated to be highest in the phosphatidic acid-enriched domain of the vesicle using the absorbance of the heme moiety for visualization. Both binding of cytochrome c and phospholipid reorganization were blocked by pretreatment of the vesicles with 0.1 M NaCl. The pore forming peptide gramicidin was examined for the effects of an integral protein on domain formation. Initially, gramicidin distributed randomly within the vesicle and showed no phospholipid specificity. Phosphatidic acid domain formation in the presence of 2.0 mM CaCl2 or 100 microM cytochrome c was not affected by the presence of 5 mol % gramicidin within the vesicles. In both cases, gramicidin was preferentially excluded from the phosphatidic acid-enriched domain and became associated with phosphatidylcholine-enriched areas of the vesicle. Thus, cytochrome c caused a major reorganization of both the phospholipids and the proteins in the bilayer.  相似文献   

20.
The study of the phospholipid composition of 14 type strains of marine proteobacteria of the genus Pseudoalteromonas showed that phospholipids are the main polar lipid constituents of membranes in these proteobacteria. The phospholipid patterns of the strains studied were found to be similar and involved five phospholipids typical of gram-negative bacteria, namely, phosphatidylethanolamine, phosphatidylglycerol, bisphosphatidic acid, lysophosphatidylethanolamine, and phosphatidic acid. The major phospholipids were phosphatidylethanolamine and phosphatidylglycerol, which add up to 89-97% of total phospholipids; bisphosphatidic acid was dominant among minor phospholipids. The prevalence of phosphatidylethanolamine (62-77% of total phospholipids) and the absence of diphosphatidylglycerol are the characteristic features of most bacteria of this genus. As in Escherichia coli, the phospholipid composition of the marine proteobacteria depended on the presence of magnesium in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号