首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. p-Bromophenacyl bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: arachidonic acid greater than collagen greater than thrombin greater than ionophore A23187. The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A.  相似文献   

2.
Aspirin, 2,3-diacetoxybenzoic acid, 2,6-diacetoxybenzoic acid and 2-propoxybenzoic acid were incubated in human platelet-rich plasma at 37°C for 5 and 10 min and the effects upon collagen induced platelet aggregation and the uptake by platelets of radioactive acetate and propionate groups from 14C-labelled analogues were studied to determine if a correlation existed between acylation of the platelet and inhibition of aggregation. Inhibition of aggregation and the uptake of radioactive label were both concentration-dependent and both increased with the time of incubation. Potency re inhibitors of aggregation was, in decreasing order, aspirin, 2,propoxybenzoic acid, 2,3-diacetoxybenzoic acid and 2,6-diacetoxybenzoic acid. Uptake of radioactive label however, was greatest with aspirin, intermediate with 2,3- and 2,6-diacetoxybenzoic acid, and lowest with 2-propoxybenzoic acid. Platelets exposed to a metabolic inhibitor (oligomycin, 10?5M for 15 min) showed reduced uptake of labelled acetate and propionate and the degree of uptake did not correlate with the degree of inhibitory activity of the analogues on platelet aggregation. Platelet fragments produced by sonification did not take up radioactive label and chloroform: methanol extraction removed about 50% of the label from intact platelets. The results do not support the hypothesis that acetylation of platelets by aspirin is solely responsible for its inhibitory effects on aggregation but do not conflict with the suggestion that acetylation of platelets may be responsible for the persistent invivo effects of aspirin.  相似文献   

3.
Using DEAE-Sephadex A-50 column chromatography and gel filtration, a potent platelet aggregation inhibitor from Trimeresurus gramineus venom was purified. It was an acidic phospholipase a, rich in aspartic acid, glutamic acid and half-cystine, with an isoelectric point of 3.6. At a concentration of 10 μg/ml, the purified inhibitor showed a marked inhibitory effect on platelet aggregations induced by adenosine diphosphate, collagen, sodium arachidonate and ionophore A-23187 in rabbit platelet-rich plasma, washed platelet suspension, as well as in thrombin-degranulated platelet suspension. The ID50 of this venom inhibitor was about 2.5–5 μg/ml in platelet aggregations induced by all these aggregation inducers. The action of this inhibitor could be partially antagonized by phosphatidylethanolamine. High concentration of Ca2+ (5 mM) did not reverse the inhibitory action even in the presence of ionophore A-238187. The [14C]serotonin release induced by sodium arachidonate and thrombin was unaffected. Malonic dialdehyde formation induced by these aggregation inducers remained unchanged. Basal and prostaglandin E1-stimulated cAMP levels were not altered by this inhibitor. No lactate dehydrogenase was released even at a concentration of 62.5 μg/ml. Polylysine-induced platelet agglutination was not affected. β-Mercaptoethanol inactivated both its phospholiase A enzymatic and platelet inhibitory activities, while p-bromophenacyl bromide only inactivated the former activity. The possibility of acting on a common final step of platelet aggregation, i.e. the intercellular adhesion between the activated platelets, was proposed.  相似文献   

4.
A potent platelet aggregation inducer (platelet aggregoserpentin) was purified from Trimeresurus gramineus snake venom by DEAE-Sephadex A-50 and Sepharyl S-300 column chromatography. It was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It elicited dose-dependently platelet aggregation and serotonin release action in rabbit platelet suspension. Exogenous calcium was required for its activity. Creatine phosphate/creatine phosphokinase and apyrase showed no significant inhibitory effect on aggregoserpentin-induced platelet aggregation in platelet suspension. Aggregoserpentin induced aggregation in ADP-refractory platelet-rich plasma. It caused no detectable molonic dialdehyde formation in the process of platelet aggregation. Indomethacin did not inhibit aggregoserpentin-induced platelet aggregation. Mepacrine abolished preferentially its aggregating activity, while prostaglandin E1 completely blocked both aggregoserpentine-induced aggregation and release reaction. Furthermore, platelet aggregoserpentine lowered basal and prostaglandin E1-stimulated cAMP levels in platelet suspension. Nitroprusside inhibited both its aggregating and releasing activity, while verapamil preferentially blocked its aggregating activity. It is concluded that aggregoserpentin activated platelets through lowering cAMP levels or the activation of endogenous phospholipase A2, resulting in the formation of platelet activating factor, but not of prostaglandins.  相似文献   

5.
Phospholipase A2 has a biphasic action upon the aggregation of rat platelets. In the first phase, occurring after shorter incubation periods with the enzyme, aggregation is enhanced. Longer incubation periods lead to an inhibition of the aggregation. The first phase disappears after the addition of indomethacin whereas the second phase persists. Incubation of platelets with phospholipase A2 leads to serotonin release. Prostaglandins are formed without platelet aggregation. Whereas the same effects occurred at the high dose of phospholipase A2 when platelets of essential fatty acid deficient rats were used, a difference was seen at the lower dose.It is concluded that in the first phase, arachidonic acid is liberated and transformed into aggregation inducing intermediates which are formed in the prostaglandin synthesis. In the second phase, changes may occur in the outer membrane which lead to a diminished sensitivity to aggregating agents.  相似文献   

6.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

7.
By means of CM-Sephadex C-50 column chromatography and gel filtration on Sephadex G-75 and G-50 columns, a potent platelet aggregation inhibitor was purified and characterized. It was a glycoprotein with a molecular weight of 31,000. It was devoid of phospholipase A, ADPase, esterase and fibrino(geno)lytic activities. It inhibited dose-dependently the aggregation of washed platelets induced by collagen, thrombin, sodium arachidonate, platelet activating factor and ionophore A23187 with a similar IC50 (5-10 micrograms/ml). It was also active in platelet-rich plasma, with an IC50 of 10-15 micrograms/ml. The venom inhibitor reduced the elasticity of whole blood clot and inhibited the thrombin-induced clot retraction of platelet-rich plasma. These activities were related to its inhibitory activity on platelet aggregation rather than blood coagulation. The venom inhibitor had various effects on [14C]serotonin release stimulated by aggregation agonists. It had no effect on thromboxane B2 formation of platelets stimulated by sodium arachidonate, collagen and ionophore A23187. The presence of this venom inhibitor prior to the initiation of aggregation was a prerequisite for the maintenance of its maximal activity. It showed a similar inhibitory effect on collagen or thrombin-induced aggregation even when it was added after the platelets had undergone the shape change. High fibrinogen levels partially antagonized its activity. The venom inhibitor completely inhibited the fibrinogen-induced aggregation of alpha-chymotrypsin-treated platelets. It is concluded that this venom inhibitor interferes with the interaction of fibrinogen with fibrinogen receptors, leading to inhibition of aggregation.  相似文献   

8.
B A Fiedel 《Life sciences》1978,22(6):531-534
Lysolecithin at non-cytotoxic concentrations (30–500 uM) was found capable of completely inhibiting the aggregation of human platelets induced by arachidonic acid in the absence of any effect upon total platelet production of malondialdehyde, an end-product of platelet prostaglandin intermediary metabolism, and to inhibit platelet aggregation stimulated by the calcium ionophore, A23187. As the induction of platelet aggregation by arachidonic acid is dependent upon an intact prostaglandin biosynthetic pathway while that of A23187 is not and since lysolecithin-induced inhibition of arachidonic acid-stimulated platelet aggregation was evident in the absence of an effect upon platelet malondialdehyde production, it is suggested that lysolecithin inhibits the platelet release reaction and irreversible aggregation by a mechanism separable from a major affect upon prostaglandin intermediary metabolism.  相似文献   

9.
ADP-stimulated aggregation of bovine blood platelets was observed in media containing isotonic potassium salts of various monovalent anions. The aggregation depended on the anion in the medium, the order of aggregation being Cl?, Br?>I?>SCN?, ClO4?. After 30-min incubation, the extent of aggregation of platelets in Cl? or Br? medium was little changed, whereas, that in SCN? or ClO4? medium was remarkably decreased. This anion dependency of aggregation may be due to change in the membrane potential.  相似文献   

10.
Calcium compartments in calf platelets were studied using a lanthanum washout procedure to distinguish between surface-bound calcium and intracellular calcium. The calcium content of calf platelets ranges from 20 to 60 nmol/109 platelets and is sensitive to the calcium concentration of the suspending medium. With 1 mM calcium in the medium, calcium uptake is rapid and reaches steady state within 1–2 min. Results obtained with the lanthanum procedure indicate that it is the surface compartment which is most affected by the extracellular calcium concentration. The surface compartment appears to be saturable and is highly exchangeable. Although the total calcium as well as the calcium content of the surface and internal compartments are variable, the ratio of calcium in either compartment to the total saturated calcium is quite constant. The data indicate that 68–85% of the platelet calcium is located internally. Thrombin produces an immediate release of platelet calcium and labeled serotonin and an increase in the 45Ca2+ uptake of both the surface and internal compartments. The release reaction is not dependent upon exogenous calcium or an influx of exogenous calcium since it occurs even in the presence of ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid. Lanthanum, however, inhibits the release reaction possibly by blocking surface calcium site and reducing the mobility of endogenous platelet calcium.  相似文献   

11.
12.
A potent platelet aggregation inducer (platelet aggregoserpentin) was purified from Trimeresurus gramineus snake venom by DEAE-Sephadex A-50 and Sephacryl S-300 column chromatography. It was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It elicited dose-dependently platelet aggregation and serotonin release reaction in rabbit platelet-rich plasma and platelet suspension. Exogenous calcium was required for its activity. Creatine phosphate/creatine phosphokinase and apyrase showed no significant inhibitory effect on aggregoserpentin-induced platelet aggregation in platelet suspension. Aggregoserpentin induced aggregation in ADP-refractory platelet-rich plasma. It caused no detectable malonic dialdehyde formation in the process of platelet aggregation. Indomethacin did not inhibit aggregoserpentin-induced platelet aggregation. Mepacrine abolished preferentially its aggregating activity, while prostaglandin E1 completely blocked both aggregoserpentin-induced aggregation and release reaction. Furthermore, platelet aggregoserpentin lowered basal and prostaglandin E1-stimulated cAMP levels in platelet suspension. Nitroprusside inhibited both its aggregating and releasing activity, while verapamil preferentially blocked its aggregating activity. It is concluded that aggregoserpentin activated platelets through lowering cAMP levels or the activation of endogenous phospholipase A2, resulting in the formation of platelet activating factor, but not of prostaglandins.  相似文献   

13.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

14.
Influence of proteins from the Agkistrodon blomhoffii ussuriensis snake venom on platelet activation and aggregation was developed on different model systems in vitro. It was shown that novel disintegrin (Blomus-B) and phospholipase A2 (Blopholipase) from the venom, activated platelets and inhibited their aggregation. Fibrino(geno)lityc enzyme (Blomulyse) does not activate platelets and has no effect on their aggregation stimulated by collagen, but inhibit ADP and adrenalin-stimulated platelet aggregation. Thrombin-like enzyme (Ancistron-Bu) activates platelets but has no effect on their aggregation. Obtained proteins can be used under development of new antiplatelet agents and as instruments for detailed elaboration and deep investigation of processes which proceed with participation of platelets.  相似文献   

15.
Arachidonic acid mobilization in platelets activated by low concentrations (less than or equal to 1.6 micrograms/ml) of TP 82, a monoclonal antibody against CD9, appears to consist of two distinct phases. In the first phase, limited arachidonic acid release occurs concomitantly with a shape change induced by TP 82. This appears to be dependent upon phospholipase A2 activation, since it is well preserved in the presence of aspirin, which completely blocked both intracellular Ca2+ elevation and phosphatidic acid formation which would indicate phospholipase C activation. The Na+ Exchange was also found to participate in the first phase of arachidonic acid mobilization, since extracellular Na+ depletion and ethylisopropylamiloride, a specific inhibitor of the Na+/H+ exchanger, effectively blocked this limited mobilization of arachidonic acid. The second, much larger, phase of arachidonic acid mobilization occurs with the beginning of platelet aggregation. A limited amount of thromboxane A2 formed during the first phase of arachidonic acid release plays an important role in induction of the massive arachidonic mobilization in the second phase. Factors, as yet unidentified, also appear to work synergistically with thromboxane A2 to induce the full picture of arachidonic acid mobilization.  相似文献   

16.
17.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4 · 10?6 M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4 · 10?5 M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8 · 10?4 to 5 · 10?3 M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregation agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

18.
The ability of eleven amantadine derivatives to induce phase separation in dipalmitoyl phosphatidylcholine bilayers was studied by differential scanning calorimetry. The relative potency varied with the shape and size of the hydrocarbon cage. These agents also markedly inhibited blood platelet aggregation. The relative potencies of these compounds to induce phase separation showed a significant correlation (r = 0.70) with their platelet inhibitory activity suggesting that their pharmacologic action may be at the level of the platelet membrane. The effective concentration of the parent component amantadine is similar to its pharmacologic concentration suggesting its use as an anti-platelet drug.  相似文献   

19.
The aggregation of human platelets by adrenaline and adenosine di-phosphate (ADP) and its inhibition by β-blockers was studied by measuring the light transmission of plateletrich plasma (PRP) and suspensions of washed platelets exposed to these agents. Inhibition of aggregation of PRP and washed platelets was dose related in the two β-blockers tested: propranolol and pindolol. The potent β-blockers pindolol was less inhibitory than propranolol when adrenaline and ADP were used to induce platelet aggregation. The aggregation of platelets by adrenaline has two phases. With low doses of the blockers only the second phase was inhibited whereas higher doses blocked both phases. Preincubation of human platelets (PRP and washed platelets) with both blockers per se resulted in release of 14C-labelled serotonin. Propranolol released more serotonin than pindolol. There was no concomitant release of lactic dehydrogenase. It is concluded that the effects of propranolol and pindolol on platelets do not correlate with the β-blocking activity of these agents. Rather, the more lypophilic agent, propranolol, is more active both in inhibition of aggregation and in releasing platelet serotonin. It is suggested that these actions of the drugs are related to their non-specific membrane effects.  相似文献   

20.
Treatment of adult female New Zealand white rabbits with ethinyl estradiol, the synthetic estrogen used in many oral contraceptives, results in a significant increase in in vivo aggregation. This alteration in platelet behavior is accompanied by diminished vascular release of antiaggregatory PGI2 (prostacyclin)-like material. Addition of a progestin prevents the change in platelet aggregation seen with the estrogen alone. Diminished vascular PGI2 release may be an important factor in the pathogenesis of thrombotic occurrences experienced by some oral contraceptive users. In vivo platelet aggregation may be of value in identifying individuals at risk of developing thrombotic disturbances while taking oral contraceptives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号