首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
This paper presents an interpretation of fluorescence polarization measurements in lipid membranes which are labelled with the apolar probe 1,6-diphenyl-1,3,5-hexatriene. The steady-state fluorescence anisotropy, rS, is resolved into a fast decaying or kinetic component, rf, and an infinitely slow decaying or static component, r. The latter contribution, which predominates in biological membranes, is exclusively determined by the degree of molecular packing (order) in the apolar regions of the membrane; r is proportional to the square of the lipid order parameter. An empirical relation between rS and r is presented, which is in agreement with a prediction based on a theory of rotational dynamics in liquid crystals. This relation enabled us to estimate a lipid structural order parameter directly from simple steady-state fluorescence polarization measurements in a variety of isolated biological membranes. It is shown that major factors determining the order parameter in biomembranes are the temperature, the cholesterol and sphingomyelin content and (in a few systems) the membrane intrinsic proteins.  相似文献   

2.
Synthesis and phase transition characteristics of aqueous dispersions of the homologous (12 : 0, 14 : 0, 16 : 0) diphosphatidylglycerols (cardiolipins) and phosphatidyldiacylglycerols are reported. Electron microscopy of the negatively stained aqueous dispersions reveals a characteristic lamellar structure suggesting that these phospholipid molecules are organized as bilayers in the aqueous dispersions. The phase transition temperature (Tm) and the enthalpy of transition (ΔH) increase monotonically with chain length in the cardiolipin and phosphatidyldiacylglycerol series; Tm for phosphatidyldiacylglycerol is higher than that for cardiolipin of the same chain-length. The transition temperatures for the enantiomeric sn-3,3- and sn-1,1-phosphatidyldiacylglycerol and for the diastereomeric, meso-sn-1,3-phosphatidyldiacylglycerol are approximately the same. The molar enthalpy for the transition of cardiolipin-NH4+ bilayers is approximately twice the value for the phosphatidylcholines of the same chain length, i.e., the molar enthalpy per acyl chain is approximately the same in the two systems. The transition temperatures for metal ion salts of C1 6-cardiolipin exhibit a biphasic dependence upon the unhydrated ionic radii, i.e. the highest Tm is observed for Ca2+- cardiolipin and decreases for the salts of ions with smaller and larger ionic radii than that of Ca2+. The lowest Tm is observed for Rb+-cardiolipin. Monovalent metal salts of cardiolipin exhibit two phase transitions. This effect may result from different conformational packing of the four acyl chains due to differences in metal-phosphate binding.  相似文献   

3.
Using the adsorption theory of chemical kinetics, a new equation concerning the growth of single populations is presented:
dXdt =μcX(1 ?)XXm1?XXm
or in its integral form:
lnXXo?lnXm?XXm?Xo+XmXmXm?XXm?Xoc(t?to)
This equation attempts to explain the relationship between population increment and limiting resources. It can be reduced to either the logistic or exponential equation under two extreme conditions. The new equation has three parameters, Xm, Xm and μc, each of which has ecological significance. XmX′m concerns the efficiency of nutrient utilization by an organism. Its value is between zero and one. With ratios approaching unity, the efficiency is high; lower ratios indicate that population increment is quickly restricted by limiting resources. μc, is a velocity parameter lying between μe, (exponential growth) and μL (logistic growth), and is dependent on the value of solXmX′m. From μc we can predict the time course of population incremental velocity (dXdt), and can observe that it is not symmetrical, unlike that derived from the logistic equation. At XmX′m = 1 the maximum velocity of the population increment predicted from the new equation is twice that of the logistic equation.Population growth in nature seems to support the new equation rather than the logistic equation, and it can be successfully fitted by means of a least square method.  相似文献   

4.
The maximum slope of the plot, appearing in the paper of Watari & Isogai (1976), was derived algebraically as a function of allosteric constants c and αmor βm (= m), and the relation between L, c, and αmor βm, was also obtained, where L = ToRo, c = KRKT, αm = FmKR, βm = FmKT, Roand To are concentrations of unligated R and T states respectively, KRand KT are microscopic dissociation constants, and Fm is the ligand concentration at the maximum slope of the plot. When the maximum slope is increased by one, the value becomes Hill constant, n. Nomographs which enable easier estimation of allosteric constants, L and c, were constructed from the two given values, the maximum slope of the plot, n ? 1, and αmor βm, in the cases where the maximum number of ligands, N, was 2 and 4. In the nomograph, log c is plotted against log L2cN keeping the value of the maximum slope of the plot and that of αmor βm constant. These nomographs show that the representation is symmetrical in the cases of L2cN > 1 and L2cN < 1.  相似文献   

5.
The polarized fluorescence from nucleotides bound to myosin heads in glycerinated muscle fibers of rabbit psoas was measured as the number of myosin heads with bound nucleotides was varied by adding various concentrations of fluorescent ?-ATP, ?-ADP and ?-AMPPNP (1:N6-etheno-ATP, -ADP and -imido ATP). The angles of the absorption and emission dipoles of bound nucleotides to the fiber axis and their angular distribution were determined from the observed values of four components of the polarized fluorescence.The maximum amount of nucleotides bound to the myosin heads in the fiber, Bm, was 170 to 270 μm. The dissociation constant of nucleotides, K12, increased in the order ?-ATP, ?-ADP, ?-AMPPNP, and was four to six times larger at a sarcomere length (SL) of 2.1 μm than at 3.7 μm.The polarized fluorescence from bound ?-ADP at SL = 2.1 μm was independent of the amount of bound ?-ADP when it was lower than one-half of Bm, indicating a single helical array of myosin heads having ?-ADP. The angles of the absorption dipole, φA, and the emission dipole, φE, to the fiber axis were 69 ° and 66 °, respectively. As the amount of bound ?-ADP exceeded one-half of Bm, the values of the polarized fluorescence showed that the extra ?-ADP bound to myosin heads with a lower affinity and had different angles to the fiber axis: φA and φE were 49 ° and 54 °, respectively. The half-maximum width of the angular distribution of these bound ?-ADP molecules, θ12, was about 20 °.During development of isometric tension in the presence of ?-ATP with Mg2+, the polarized fluorescence was independent of the amount of bound ?-ATP when it was lower than one-third of Bm or when the concentration of free ?-ATP was lower than 100 μm, indicating a single helical array of myosin heads undergoing the ATPase reaction. The angles of bound nucleotides, φA and φE, were 68 ° and 64 °, respectively. The half-maximum width of the angular distribution, θ12, was about 22 °. As the amount of bound nucleotides exceeded one-third of Bm, the polarized fluorescence showed deviation from the values expected for the single helical array.The angles φA and φE for bound ?-AMPPNP were about 58 ° and 62 °, respectively, but the angular distribution was broad; that is, θ12 was about 42 °. These angles were independent of the amount of bound ?-AMPPNP.In a stretched fiber with SL = 3.7 μm, the polarized fluorescence showed that the angles of ?-ADP, ?-ATP and ?-AMPPNP bound to myosin heads had almost random distributions; θ12 was 90 ° to 100 °, independent of the amount of bound nucleotides. Similar results were obtained with the relaxed fiber in the presence of ?-ATP.  相似文献   

6.
The protein-induced lipid transfer between phosphatidylcholine vesicles was investigated. Measurements of the degree of polarization at single vesicles were made by flow cytometry using diphenylhexatriene as the optical probe. Vesicles differing in phase transition temperature could be distinguished by their degree of polarization at a temperature where one population was in the fluid (T > Tt) and the other one in the quasi-crystalline (T < Tt) state. Besides vesicles containing exchanged lipids we also observed fractions of unaffected vesicles. The lipid exchange was visualized directly by freeze-fracture electron microscopy. The characteristic ‘ripple’ structure of phosphatidylcholine vesicles disappeared upon exchange with lipid in the fluid state.  相似文献   

7.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

8.
The phase transition temperature (Tt) of dipalmitoyl phosphatidic acid multilamellar liposomes is depressed 10°C by the inhalation anesthetic methoxyflurane at a concentration of 100 mmol/mol lipid. Application of 100 atm of helium pressure to pure phosphatidic acid liposomes increased Tt only 1.5°C. However, application of 100 atm helium pressure to dipalmitoyl phosphatidic acid lipsomes containing 100 mmol methoxyflurane/mol lipid almost completely antagonized the effect of the anesthetic. A nonlinear pressure effect is observed. In a previous study, a concentration of 60 mmol methoxyflurane/mol dipalmitoyl phosphatidylcholine depressed Tt only 1.5°C, exhibiting a linear pressure effect. The completely different behavior in the charged membrane is best explained by extrusion of the anesthetic from the lipid phase.  相似文献   

9.
10.
In the redheaded bunting Emberiza bruniceps, thyroidectomy inhibited premigratory fattening and nocturnal restlessness—two characteristics of avian migration—observed in caged birds during the premigratory period (March/April). Thyroxine (T4) and triiodothyronine (T3) administration in thyroidectomized birds stimulated locomotor activity and restored the loss in body weight. Annual variations in circulating thyroid hormone concentrations revealed a significant rise in T3T4 ratio prior to spring migration in both years studied. This increase in circulating T3T4 ratio may be associated with the development of migratory disposition in this bird. There was no increase in circulating T3T4 ratio prior to autumnal migration, however, plasma T4 increased significantly. Different thyroidal mechanisms are most likely involved in spring and fall migratory periods. While T3 remained low throughout, apart from the characteristic spring rise, high T4 levels in E. bruniceps were associated with periods of reproduction and molting, the latter coinciding partly with autumnal migration.  相似文献   

11.
An aqueous dispersion of fully hydrated bovine sphingomyelin was studied using 14N-NMR spectroscopy. Spectra were obtained as a function of temperature over the range 15–80°C, in both the liquid crystal and gel phases. In the liquid crystal phase, powder pattern lineshapes were obtained, whose quadrupolar splitting slowly decreases with increasing temperature. The spectra are increasingly broadened as the temperature is lowered through the phase transition into the gel phase. The linewidths and the second moments of these spectra indicate that the onset of a broad phase transition occurs at approx. 35°C, in agreement with previous calorimetric and 31P-NMR measurements. There is no evidence from the lineshapes for an hexagonal phase in this system, and this conclusion is supported by X-ray diffraction measurements carried out on aqueous dispersions of sphingomyelin in both phases. Assuming that the static nitrogen quadrupole coupling constant is the same for both sphingomyelin and dipalmitoyl-l-α-phosphatidylcholine (DPPC), the decrease observed in the quadrupolar splitting of sphingomyelin compared to that of DPPC indicates that the orientational order of the choline headgroup in liquid crystalline sphingomyelin is not the same as that of its counterpart in DPPC. Preliminary relaxation time measurements of T1 and T2 are presented which suggest that there are also dynamic differences between sphingomyelin and DPPC in the choline headgroup.  相似文献   

12.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

13.
The lateral diffusion of the excimer-forming probe pyrene decanoic acid has been determined in erythrocyte membranes and in vesicles of the lipid extracts. The random walk of the probe molecules is characterized by their jump frequency, vj, within the lipid matrix. At T = 35°C a value of vj = 1.6 · 103 s?1 is found in erythrocyte membranes. A somewhat slower mobility is determined in vesicles prepared from lipid extracts of the erythrocyte membrane. Depending on structure and charge of the lipids we obtain jump frequencies between 0.8 · 108 s?1 and 1.5 · 108 s?1 at T = 35°C. The results are compared with jump frequencies yielded in model membranes.The mobility of molecules perpendicular to the membrane surface (transversal diffusion) is investigated. Erythrocyte ghosts doped with pyrene phosphatidylcholine were mixed with undoped ghosts in order to study the exchange kinetics of the probe molecule. A fast transfer between the outer layers of the ghost cells (τ12 = 1.6 min at T = 37°C) is found. The exchange process between the inner and the outer layer of one erythrocyte ghost (flip-flop process) following this fast transfer occurs with a half-life time value of t12 = 100 min at T = 37°C.The application of excimer-forming probes presumes a fluid state of the membrane. Therefore we investigated the phase transition behaviour using the excimer technique. Beside a thermotropic phase transition at T = 23°C and T = 33°C we observed an additional fluidity change at T = 38°C in erythrocyte ghosts. This transition is attached to a separation of the boundary lipid layer from the intrinsic proteins. No lipid phase transition is observed in liposomes from isolated extracts of the erythrocyte membrane with our methods.  相似文献   

14.
Reversible flbrinogen polymer formation was examined at pH 6.6 and Γ/2 0.3. The equilibrium fraction of fibrinogen present as polymer, (Pmf)e, was determined by gel filtration for fibrinogen concentrations, FO, from 48 to 166 μm. Using FO in molarity, the experimental relation is ln [FO(Pmf)e] = 3.53 ln[FO(1 ? (Pmf)e)] + 23.73. This relation and attendant confidence limits are examined assuming, during filtration, that the original polymer population is either stable or selected polymer species dissociate to monomer. The possibility that all polymers are open is excluded since the calculated microscopic association constant would then increase with FO. Acceptable models are based on the assumptions that polymers are open, with association constant Ka, until restricted by closure, with association constant Kr, at an integral degree of polymerization, n. Values are selected on the basis that interaction parameters are independent of FO and that the required molar decrease in free energy is a minimum. Assuming polymer stability, the experimental relation at 273 °K gives n = 4, KrKa = 1.2 m, and Ka = 736 m?1. Temperature dependence gives ΔH= ?16.9 kcal/mol and ΔSOa = ?48.8 e.u. KrKa indicates a relation between changes in entropy. The probability is >0.90 that KrKa ? 56 m, which indicates a greater loss of degrees of freedom on closure than on association. Conclusions are not altered by the assumption that only the closed polymer species is stable. As ionic strength is decreased at pH 6.6, Ka increases. The clotting time of an otherwise constant system decreases as system Pmf is increased.  相似文献   

15.
The mode of interaction of aqueous dispersions of phospholipid vesicles is investigated. The vesicles (average diameter 950 Å) are prepared from total lipid extracts of Escherichia coli composed of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. One type of vesicle contains trans-Δ9-octadecenoate, the other type trans-Δ9-hexadecenoate as predominant acyl chain component. The vesicles show order?disorder transitions at transition temperatures, Tt = 42° C and Tt = 29° C, respectively. A mixture of these vesicles is incubated at 45° C and lipid transfer is studied as a function of time using the phase transition as an indicator. The system reveals the following properties: Lipids are transferred between the two vesicle types giving rise to a vesicle population where both lipid components are homogeneously mixed. Lipid transfer is asymmetric, i.e. trans-Δ9-hexadecenoate-containing lipid molecules appear more rapidly in the trans-Δ9-octadecenoate-containing vesicles than vice versa. At a given molar ratio of the two types of vesicles the rate of lipid transfer is independent of the total vesicle concentration. It is concluded that lipid exchange through the water phase by way of single molecules or micelles is the mode of communication of these negatively charged lipid vesicles.  相似文献   

16.
A wide range of concentrated random coil polysaccharide solutions have been assessed for textural attributes by a trained sensory panel. The only textural terms invoked to describe these model systems were ‘thickness’ and ‘stickiness’, which were shown to be highly correlated, and essentially identical numerically, using a ratio scaling technique. Viscosity (η) measurements over a wide range of shear rates (γ) for all these samples gave flow curves (log η versus log γ) of the same form. Differences in flow behaviour between samples could then be characterised completely by two parameters, the maximum viscosity at low shear rates (η0), and the shear rate (γ?0·1) at which η = solη010. A simple linear relationship was demonstrated between these two parameters and perceived thickness (T) or stickiness (S), irrespective of polysaccharide type. For Newtonian liquids, log T (or log S) varied linearly with log η. Hence the effective ‘in-mouth’ thickness of random coil polysaccharide solutions, in normal viscosity units, may be predicted directly from η0 and γ?0·1 by the simple relationship: log ηN = 1·13 log η0 + 0·45 logγ?0·1 ? 1·72 where ηN is the viscosity of a Newtonian solution which would be perceived as identical in thickness (and stickiness) to the polysaccharide solution.  相似文献   

17.
Respiration (O), ammonium (NH4), phosphate (PO4), total nitrogen (NT) and phosphorus (PT) excretions were measured on mixed zooplankton during 3-, 6-, 9-, 12-, 21-, and 24-h incubation periods at 20–23 C. The excretion rates of PO4, NT. and PT decrease during a 21-h period, while rates of respiration and excretion of NH{IN4} are constant. The percentage of inorganic nitrogen excreted increases regularly from 3 h (30–40% of total nitrogen) to 21 h (70–80%) and it could be either due to a bacterial activity which was measured or to a decrease with time of organic nitrogen excreted because of starvation. ONT, OPO4, OPT, and NH4PO4 ratios increase during the first 9 h of incubation; the percentage of inorganic phosphorus excreted is higher at the very beginning and then remains constant from 6 to 24 h. ONH4 and NTPT ratios are constant during a 24-h term, which makes them useful metabolic indexes.  相似文献   

18.
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588–4599) in the tRNA derivative the ethidium is present in three states (T1–T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10–100 ms) between T1 and T2, and a slow one (100–1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio [T2][T1] obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   

19.
The longitudinal relaxation rate (1T1p) of water protons was studied in solutions of Mn(II)-concanavalin A at a number of frequencies. These relaxation rates were lowered in the presence of a variety of saccharides which have affinities for concanavalin A which range over two orders of magnitude. A good correlation was found in which saccharides which bind tightly have the greatest effect and saccharides which bind weakly or not at all have little effect on the 1T1p values. The temperature dependence of the proton relaxation rates showed that the lowering of these rates in the presence of saccharides was most likely due to a change in the exchange rate of solvent interacting with protein-bound Mn(II), 1Tm.An analysis of the temperature and frequency dependence of the 1T1p and 1T2p (transverse) solvent proton relaxation rates resulted in evaluation of a number of parameters for solvent water molecules interacting in the first coordination sphere of Mn(II) bound to concanavalin A. The ratio of the number of water molecules (q) to the Mn(II)-proton distance (r) obtained from a computer fit of the data over a limited temperature range is in accord with the findings of Koenig et al. ((1973) Proc. Nat. Acad. Sci.70, 475) and Meirovitch and Kalb ((1973) Biochim. Biophys. Acta303, 258). However, our studies of 1T1p and 1T2p of water over a more extensive temperature range are best fit with the following conclusions: at low temperatures (<20 °C), the data are consistent with an outer-sphere relaxation process. At higher temperatures (> 30 °C), the water molecule in the inner coordination sphere of the bound Mn(II) begins exchanging more rapidly and contributes to the relaxation processes (1T1p and 1T2p). The relaxation time of protons in the inner coordination shell, T1M, contributes over the entire temperature range and produces a frequency dependence in the relaxivity data from 6 to 100 MHz since the contributions to the correlation times are in the range 10?9-10?8 sec.  相似文献   

20.
Kinetic studies on the RNase T1-catalyzed transesterification of 12 dinucleoside monophosphates, Np1N2 (N1 = A, C, and U; N2 = A, C, G, and U) at pH 5, 25 °C, and 0.2 m ionic strength, revealed that the catalytic efficiency (kcatKm) for GpN substrates (H. L. Osterman, and F. G. Walz, Jr., 1978, Biochemistry, 17, 4142) was ~106-fold greater than corresponding ApNs and at least 108-fold greater than corresponding CpNs and UpNs. The catalytic activity with ApN substrates survives phenol extraction which indicates (along with other criteria) that it is intrinsic to RNase T1 and is not due to trace contamination by other nucleases. Circumstantial evidence is presented which suggests that homologous GpN and ApN substrates bind productively at different sites on the enzyme. The results of steady-state kinetic studies of RNase T1 with IpNs (N = C and U) were compared with those for GpNs and indicated that the primary effect of the guanine 2-NH2 group is to enhance substrate binding at the primary recognition site by ~2.6 kcal/mol. Values of (kcatKm) showed the order NpC > NpU (N = A, G, and I) which evidences the existence of a subsite for the leaving nucleoside group that prefers cytidine: interactions at this subsite are reflected in kcat rather than Km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号