首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When purple-membrane fragments from Halobacterium halobium are added to one aqueous phase of a positively-charged black lipid membrane, the membrane becomes photoelectrically active. Under normal conditions the steady-state photo-current is extremely low, but increases considerably when the lipid bilayer is doped with proton-permeable gramicidin channels or with a lipophilic acid-base system. These findings indicate that the purple-membrane sheets are bound to the surface of the bilayer, forming a sandwich-like structure. The time-behaviour of the photocurrent may be interpreted on the basis of a simple equivalent circuit which contains the conductance and capacitance of the purple membrane in series with the conductance and capacitance of the lipid bilayer. From the dependence of the photocurrent on the polarization of the exciting light the average angle between the transition moment of the retinal chromophore and the plane of the bilayer was calculated to be about 28 degrees. Furthermore, it was shown that chromophore-free apomembrane binds to the lipid bilayer and that its photoelectrical activity can be restored in situ by adding all-trans-retinal to the aqueous phase.  相似文献   

2.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   

3.
In a range of low ionic strength, aqueous dispersions of the anionic phospholipid DMPG (dimyristoylphosphatidylglycerol) have a transparent intermediate phase (IP, between T(m)(on) congruent with 20 degrees C and T(m)(off) congruent with 30 degrees C) between the turbid gel and fluid membrane phases, evidenced in turbidity data. Small angle x-ray scattering results on DMPG dispersions show that, besides the bilayer peak present in all phases, a peak corresponding to a mesoscopic structure at approximately 400 A is detected only in IP. The dependence of this peak position on DMPG concentration suggests a correlation in the bilayer plane, consistent with the stability of vesicles in IP. Moreover, observation of giant DMPG vesicles with phase contrast light microscopy show that vesicles "disappear" upon cooling below T(m)(off) and "reappear" after reheating. This further proves that although vesicles cannot be visualized in IP, their overall structure is maintained. We propose that the IP in the melting regime corresponds to unilamellar vesicles with perforations, a model which is consistent with all described experimental observations. Furthermore, the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance and could be used in applications for controlled release from nanocompartments.  相似文献   

4.
Wave-guide spectroscopy exploits the light pipe properties of planar lipid bilayers by propagating a light wave along the plane of the bilayer. Applying this technique to the optical absorption of chromophore in the membrane, results in an enhanced sensitivity when compared to normal incidence spectroscopy. This gain factor is of the order of 100 per mm optical path along the bilayer, thus transforming the weak absorbances in lipid membranes into easily measurable quantities. Wave-guide spectroscopy has been used to measure the adsorption isotherm of hydrophobic dipicrylamine ions in a phosphatidylcholine membrane. The adsorption isotherm is linear for low aqueous concentrations, in the micromolar range however, it changes into a sublinear dependence. The addition of an inert alkali salt to the electrolyte favours the adsorption of hydrophobic ions. Current saturation is observed with the transition to the sublinear isotherm. When using the time constant for current relaxation as an indicator of changes in the magnitude of the surface potential, it does not seem to vary with the additional dipicrylamine which adsorbs in the presence of high concentrations of alkali salt in the electrolyte. A compensation of hydrophobic charge by the alkali ions from the inert electrolyte is proposed.  相似文献   

5.
The orientation of the 568 nm transition dipole moment of the retinal chromophore of bacteriorhodopsin has been determined in purple membranes from Halobacterium halobium and in reconstituted vesicles. The angle between the 568 nm transition dipole moment and the normal to the plane of the membrane was measured in two different ways.In the first method the angle was obtained from transient dichroism measurements on bacteriorhodopsin incorporated into large phosphatidylcholine vesicles. Following flash excitation with linearly polarized light, the anisotropy of the 568 nm ground-state depletion signal first decays but then reaches a time-independent value. This result, obtained above the lipid phase transition, is interpreted as arising from rotational motion of bacteriorhodopsin which is confined to an axis normal to the plane of the membrane. It is shown that the relative amplitude of the time-independent component depends on the orientation of the 568 nm transition dipole moment. From the data an angle of 78 ° ± 3 ° is determined.In the second method the linear dichroism was measured as a function of the angle of tilt between the oriented purple membranes and the direction of the light beam. The results were corrected for the angular distribution of the membranes within the oriented samples, which was determined from the mosaic spread of the first-order lamellar neutron diffraction peak. In substantial agreement with the results of the transient dichroism method, linear dichroism measurements on oriented samples lead to an angle of 71 ° ± 4 °.No significant wavelength dependence of the dichroic ratio across the 568 nm band was observed, implying that the exciton splitting in this band must be substantially smaller than the recently suggested value of 20 nm (Ebrey et al., 1977).The orientation of the 568 nm transition dipole moment, which coincides with the direction of the all-trans polyene chain of retinal, is not only of interest in connection with models for the proton pump, but can also be used to calculate the inter-chromophore distances in the purple membrane.  相似文献   

6.
The polarity of the interface between a lipid bilayer membrane and bulk water is an important physical parameter of the membrane. It is likely that several membrane-dependent biological functions are modulated by this property. However, interfacial polarity can be difficult to define because of an imprecise knowledge of the molecular nature of the interface. Nevertheless, attempts have been made to measure this quantity with the use of fluorescent probes which are sensitive to the solvent polarity. Often, however, other factors, such as the rate of solvent relaxation must be known in order to interpret the fluorescent properties in terms of the dielectric constant. In addition, the spatial orientation and location of the fluorophore are often not known precisely. Nevertheless, there have been successful efforts to gain a more accurate knowledge of this aspect of membrane physical properties and its relationship to biological phenomena is discussed.  相似文献   

7.
The dependences of adsorbed water state (obtained from the variations in 1H NMR spectra with the angle between the bilayer normal and magnetic field direction) and water diffusion along the bilayer normal (measured using pulsed field gradient 1H NMR) on hydration degree have been studied in macroscopically oriented bilayers of dioleoylphosphatidylcholine. The angle dependences of the shape of NMR spectrum are qualitatively different only for water concentrations higher and lower than that achieved by hydration from saturated vapors (χeq, about 23%). At concentrations lower than χeq, all water in the sample either makes the hydration shells of the lipid polar heads or is in fast exchange with the shell water, so the spin-echo signal from water is detected only within a narrow range of angles close to the magic angle, 54.7°. At concentration exceeding χeq, the spin-echo signal from water is retained at all orientations, suggesting that a portion of water between bilayers (quasi-free water) slowly exchanges with water bound to the polar heads. There is an inverse dependence of the coefficient of water self-diffusion through the bilayer system on the hydration degree, which is described in the Tanner model with account of water self-diffusion in the hydrophobic part of the bilayer. Bilayer permeability, distribution coefficient of molecules between aqueous and lipid phases, and water self-diffusion coefficient in the hydrophobic region of the bilayer are estimated.  相似文献   

8.
The pathology of type 2 diabetes mellitus is associated with the aggregation of human islet amyloid polypeptide (hIAPP) and aggregation-mediated membrane disruption. The interactions of hIAPP aggregates with lipid membrane, as well as the effects of pH and lipid composition at the atomic level, remain elusive. Herein, using molecular dynamics simulations, we investigate the interactions of hIAPP protofibrillar oligomers with lipids, and the membrane perturbation that they induce, when they are partially inserted in an anionic dipalmitoyl-phosphatidylglycerol (DPPG) membrane or a mixed dipalmitoyl-phosphatidylcholine (DPPC)/DPPG (7:3) lipid bilayer under acidic/neutral pH conditions. We observed that the tilt angles and insertion depths of the hIAPP protofibril are strongly correlated with the pH and lipid composition. At neutral pH, the tilt angle and insertion depth of hIAPP protofibrils at a DPPG bilayer reach ~52° and ~1.62 nm with respect to the membrane surface, while they become ~77° and ~1.75 nm at a mixed DPPC/DPPG membrane. The calculated tilt angle of hIAPP at DPPG membrane is consistent with a recent chiral sum frequency generation spectroscopic study. The acidic pH induces a smaller tilt angle of ~40° and a shallower insertion depth (~1.24 nm) of hIAPP at the DPPG membrane surface, mainly due to protonation of His18 near the turn region. These differences mainly result from a combination of distinct electrostatic, van der Waals, hydrogen bonding and salt-bridge interactions between hIAPP and lipid bilayers. The hIAPP-membrane interaction energy analysis reveals that besides charged residues K1, R11 and H18, aromatic residues Phe15 and Phe23 also exhibit strong interactions with lipid bilayers, revealing the crucial role of aromatic residues in stabilizing the membrane-bound hIAPP protofibrils. hIAPP-membrane interactions disturb the lipid ordering and the local bilayer thickness around the peptides. Our results provide atomic-level information of membrane interaction of hIAPP protofibrils, revealing pH-dependent and membrane-modulated hIAPP aggregation at the early stage.  相似文献   

9.
应用^13C-CP/MAS和DSC方法研究蟾毒灵与磷脂膜相互作用的执致相变特性及动力学特性。DSC曲线表明蟾毒灵使磷脂膜相变温度降低,吸热峰变宽。^13C-CP/MAS谱表明磷脂膜的NMR信号峰化学位移随温度稍有变化,提示磷脂膜在液晶态脂肪烃链有不同程序的反-旁式异构化。含蟾毒灵的EPC脂双层NMR谱,随温度升高有蟾毒灵信号峰出现,EPC脂双层分子内各部分的信号峰强度和峰形变化明显,说明脂双层分子  相似文献   

10.
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (α-helical and β-barrel), and the seven different bilayer systems range in thickness from ∼28 to ∼43 Å. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.  相似文献   

11.
The ESR spectra of six different positional isomers of a stearic acid and three of a phosphatidylcholine spin label have been studied as a function of temperature in chromaffin granule membranes from the bovine adrenal medulla, and in bilayers formed by aqueous dispersion of the extracted membrane lipids. Only minor differences were found between the spectra of the membranes and the extracted lipid, indicating that the major portion of the membrane lipid is organized in a bilayer arrangement which is relatively unperturbed by the presence of the membrane protein. The order parameter profile of the spin label lipid chain motion is less steep over the first half of the chain than over the section toward the terminal methyl end of the chain. This ‘stiffening’ effect is attributed to the high proportion of cholesterol in the membrane and becomes less marked as the temperature is raised. The isotropic hyperfine splitting factors of the various positional isomers display a profile of decreasing polarity as one penetrates further into the interior of the membrane. No marked differences are observed between the effective polarities in the intact membranes and in bilayers of the extracted membrane lipids. The previously observed temperature-induced structural change occurring in the membranes at approx. 35°C was found also in the extracted lipid bilayers, showing this to be a result of lipid-lipid interactions and not lipid-protein interactions in the membrane. A steroid spin label indicated a second temperature-dependent structural change occurring in the lipid bilayers at lower temperatures. This corresponds to the onset of a more rapid rotation about the long axis of the lipid molecules at a temperature of approx. 10°C. The lipid bilayer regions probed by the spin labels used in this study may be involved in the fusion of the chromaffin granule membrane leading to hormone release by exocytosis.  相似文献   

12.
This study shows the effect of K+ on phospholipid-protein interactions in light sarcoplasmic reticulum (LSR) as measured by 31P NMR. In the presence of 110 mM K+, a substantial effect of the membrane protein on the behavior of the phospholipids was detected. Subtracting the spectrum of the LSR lipid extract from the spectrum of the intact LSR membrane produced a difference spectrum of much greater breadth than the normal phospholipid bilayer powder pattern. This powder pattern is indicative of a phospholipid domain considerably more motionally restricted than the phospholipids in a normal phospholipid bilayer. The apparent axially symmetric powder pattern is consistent with axial diffusion. In a reconstituted membrane containing the calcium pump protein at a lipid/protein ratio much less than in the light sarcoplasmic reticulum, the broad component was more prominent. The relative resonance intensity of the broad component appeared to be proportional to the lipid/protein ratio of the membrane. In 10 mM K+, no broad powder pattern is observed in the corresponding difference spectrum. Thus, in the absence of potassium, the membrane protein has much less influence on the phospholipid of the membrane, as measured by 31P NMR. In addition to the effects of K+ on the membrane structure of the sarcoplasmic reticulum, K+ modulated the function of the calcium pump. The rate of calcium-dependent ATP hydrolysis increased in light sarcoplasmic reticulum when [K+] increased from 10 to 110 mM. The rate of calcium transport was also stimulated by an increase in K+.  相似文献   

13.
A J Jin  M Edidin  R Nossal  N L Gershfeld 《Biochemistry》1999,38(40):13275-13278
Cells adjust their membrane lipid composition when they adapt to grow at different temperatures. The consequences of this adjustment for membrane properties and functions are not well understood. Our report shows that the temperature dependence of the diffusion of a probe molecule in multilayers formed from total lipid extracts of E. coli has an anomalous maximum at a temperature corresponding to the growth temperature of each bacterial preparation (25, 29, and 32 degrees C). This increase in the lateral diffusion coefficient, D, is characteristic of membrane lipids in a critical state, for which large fluctuations of molecular area in the plane of the bilayer are expected. Therefore, changes in lipid composition may be due to a requirement that cells maintain their membranes in a state where molecular interactions and reaction rates are readily modulated by small, local perturbations of membrane organization.  相似文献   

14.
Solid-state NMR determination of the depth of insertion of membrane peptides and proteins has so far utilized 1H spin diffusion and paramagnetic relaxation enhancement experiments, which are typically conducted in the liquid-crystalline phase of the lipid bilayer. For membrane proteins or peptide assemblies that undergo intermediate-timescale motion in the liquid-crystalline membrane, these approaches are no longer applicable because the protein signals are broadened beyond detection. Here we show that the rigid-solid HETCOR experiment, with an additional spin diffusion period, can be used to determine the depth of proteins in gel-phase lipid membranes, where the proteins are immobilized to give high-intensity solid-state NMR spectra. Demonstration on two membrane peptides with known insertion depths shows that well-inserted peptides give rise to high lipid cross peak intensities and low water cross peaks within a modest spin diffusion mixing time, while surface-bound peptides have higher water than lipid cross peaks. Furthermore, well-inserted membrane peptides have nearly identical 1H cross sections as the lipid chains, indicating equilibration of the peptide and lipid magnetization. Using this approach, we measured the membrane topology of the α-helical fusion peptide of the paramyxovirus, PIV5, in the anionic POPC/POPG membrane, in which the peptide undergoes intermediate-timescale motion at physiological temperature. The gel-phase HETCOR spectra indicate that the α-helical fusion peptide is well inserted into the POPC/POPG bilayer, spanning both leaflets. This insertion motif gives insight into the functional role of the α-helical PIV5 fusion peptide in virus-cell membrane fusion.  相似文献   

15.
Zuzana Tomaskova 《FEBS letters》2010,584(10):2085-2092
This minireview focuses on observation of the properties, functional significance, and modulation of single chloride channels in the mitochondrial inner membrane using two electrophysiological methods - the patch-clamp and bilayer lipid membrane methods. Measurements of parameters such as conductance, Cl/K+ selectivity, voltage or pH dependence as well as their modulation by endogenous and exogenous compounds using individual mitochondrial chloride channels result in an unexpectedly wide range of values. This paper discusses the origin of this wide variety of channel parameters and the possible involvement of these channels in mitochondrial membrane potential oscillations, apoptosis, carrier function, and mitochondrial fusion and fission.  相似文献   

16.
Herman G. Weller Jr  H.Ti Tien 《BBA》1973,325(3):433-440
Photovoltage spectroscopy with polarized light has been used to investigate the structure of black lipid membranes formed from spinach chloroplast extracts. The photovoltage action spectrum of the black lipid membranes is similar to the absorption spectrum of the membrane-forming solution, with a red and principal blue peak. The magnitudes of these peaks have been found to depend on the direction of polarization of the exciting light. This is apparently a direct consequence of the dichroism of the membrane. The polarized light photovoltage data have been used to obtain information on the orientation of chlorophyll in the membrane.  相似文献   

17.
We have utilized Fourier transform infrared spectroscopy to study the interaction of the antimicrobial peptide gramicidin S (GS) with lipid micelles and with lipid monolayer and bilayer membranes as a function of temperature and of the phase state of the lipid. Since the conformation of GS does not change under the experimental conditions employed in this study, we could utilize the dependence of the frequency of the amide I band of the central beta-sheet region of this peptide on the polarity and hydrogen-bonding potential of its environment to probe GS interaction with and location in these lipid model membrane systems. We find that the GS is completely or partially excluded from the gel states of all of the lipid bilayers examined in this study but strongly partitions into lipid micelles, monolayers, or bilayers in the liquid-crystalline state. Moreover, in general, the penetration of GS into zwitterionic and uncharged lipid bilayer coincides closely with the gel to liquid-crystalline phase transition of the lipid. However, GS begins to penetrate into the gel-state bilayers of anionic phospholipids prior to the actual chain-melting phase transition, while in cationic lipid bilayers, GS does not partition strongly into the liquid-crystalline bilayer until temperatures well above the chain-melting phase transition are reached. In the liquid-crystalline state, the polarity of the environment of GS indicates that this peptide is located primarily at the polar/apolar interfacial region of the bilayer near the glycerol backbone region of the lipid molecule. However, the depth of GS penetration into this interfacial region can vary somewhat depending on the structure and charge of the lipid molecule. In general, GS associates most strongly with and penetrates most deeply into more disordered bilayers with a negative surface charge, although the detailed chemical structure of the lipid molecule and physical organization of the lipid aggregate (micelle versus monolayer versus bilayer) also have minor effects on these processes.  相似文献   

18.
Transmembrane profiles of molecular oxygen in lipid bilayers are not only significant for membrane physiology and pathology, but also are essential to the determination of membrane protein structure by site-directed spin labeling. Oxygen profiles obtained with spin-labeled lipid chains have a Boltzmann sigmoidal dependence on the depth into each lipid leaflet, which represents a two-compartment distribution between outer and inner regions of the membrane, with a transfer free energy that depends linearly on distance from the dividing planes. Transmembrane profiles for intramembrane polarity, and for water penetration into the membrane, have an identical form, but are of the reverse sign. Comparison with recently published oxygen profiles from a site-specifically spin-labeled alpha-helical transmembrane peptide validates the use of spin-labeled lipids for all these profiles and provides the necessary bridge to generate the full bilayer from a single lipid leaflet.  相似文献   

19.
The penetration of water into the hydrophobic interior leads to polarity and hydration profiles across lipid membranes which are fundamental in the maintenance of membrane architecture as well as in transport and insertion processes into the membrane. The present paper is an original attempt to evaluate simultaneously polarity and hydration properties of lipid bilayers by a fluorescence approach. We applied two 3-hydroxyflavone probes anchored in lipid bilayers at a relatively precise depth through their attached ammonium groups. They are present in two forms: either in H-bond-free form displaying a two-band emission due to an excited state intramolecular proton transfer reaction (ESIPT), or in H-bonded form displaying a single-band emission with no ESIPT. The individual emission profiles of these forms were obtained by deconvolution of the probes' fluorescence spectra. The polarity of the probe surrounding the bilayer was estimated from the two-band spectra of the H-bond-free form, while the local hydration was estimated from the relative contribution of the two forms. Our results confirm that by increasing the lipid order (phase transition from fluid to gel phase, addition of cholesterol or decrease in the lipid unsaturation), the polarity and to a lesser extent, the hydration of the bilayers decrease simultaneously. In contrast, when fluidity (i.e. lipid order) is kept invariant, increase of temperature and of bilayer curvature leads to a higher bilayer hydration with no effect on the polarity. Furthermore, no correlation was found between dipole potential and the hydration of the bilayers.  相似文献   

20.
Massey JB  Pownall HJ 《Biochemistry》2005,44(30):10423-10433
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号