首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1983,723(2):150-159
Interaction of N,N′-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30–65% inactivation over a concentration range of 5–50 μM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5·105 M?1·min?1. The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

2.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

3.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   

4.
The rate of inhibition of cyclic photophosphorylation in chloroplast thylakoids by the arginine reagent phenylglyoxal was enhanced in the light, i.e., under conditions where membrane energization occurred. Uncouplers, but not energy-transfer inhibitors, prevented the effect of light. Chemical modification of chloroplast thylakoids by phenylglyoxal under dark or in light conditions affected differently the light-induced exchange of tightly bound ADP. In both cases the exchange was less inhibited than photophosphorylation. Complete inhibition of ATPase activity of soluble CF1 was correlated with the incorporation of 8 mol [14C]phenylglyoxal per mol enzyme. About 50% of the incorporated radioactivity was lost at different rates depending on the buffer present and suggesting a change in the stoichiometry of the adduct from 2:1 to 1:1. Inhibition of ATPase and photophosphorylating activities of chloroplasts by modification with [14C]phenylglyoxal in the dark was associated with the incorporation of 1 and 2 mol reagent per mol membrane-bound CF1, respectively. In the light the rate of incorporation was enhanced and both reactions were inactivated when 2 mol [14C]phenylglyoxalCF1 were bound. In all the labelling experiments the radioactivity was mainly recovered from the α- and β-subunits.  相似文献   

5.
Dicyclohexylcarbodiimide (DCCD), a potent inhibitor of the F0F1-type H+-translocating ATPase, was employed to determine the possible involvement of such an ATPase in urinary acidification. Two methods were used in this approach: (1) the reaction of [14C]DCCD with tissues involved in urinary acidification and (2) the inhibition of ATPase activity by DCCD. Membrane components from epithelial cells of toad and turtle urinary bladder and brush borders of rabbit kidney were reacted with [14C]DCCD and analyzed by polyacrylamide gel electrophoresis both before and after extraction with organic solvents. Although a DCCD-binding component was extracted from toad and turtle bladder membranes by chloroform/methanol (2:1, vv), the binding was not saturable. Analysis of this DCCD-binding component by thin-layer chromatography indicated that there was no ninhydrin reactivity associated with the [14C]DCCD binding. Moreover, all attempts to precipitate a DCCD-binding protein were unsuccessful. This and other evidence suggested that the observed DCCD binding was to phospholipid. In the second type of experiments, the ATPase activity present in brush borders from rabbit kidney was partially inhibited by DCCD, but at a concentration that is over two orders of magnitude greater than that required for typical DCCD-sensitive ATPase. We conclude from our failure to find positive evidence of a DCCD-reactive protein and from the relative insensitivity of the ATPase to DCCD that either urinary acidification is not accomplished by a typical F0F1-type translocating ATPase, or the F0 has been modified so that the sensitivity to DCCD has been altered or lost.  相似文献   

6.
Joël Lunardi  Pierre V. Vignais 《BBA》1982,682(1):124-134
(1) N-4-Azido-2-nitrophenyl-γ-[3H]aminobutyryl-AdoPP[NH]P(NAP4-AdoPP[NH]P) a photoactivable derivative of 5-adenylyl imidodiphosphate (AdoPP[NH]P), was synthesized. (2) Binding of 3H]NAP4-AdoPP[NH]P to soluble ATPase from beef heart mitochrondria (F1) was studied in the absence of photoirradiation, and compared to that of [3H]AdoPP[NH]P. The photoactivable derivative of AdoPP[NH]P was found to bind to F1 with high affinity, like AdoPP[NH]P. Once [3H]NAP4-AdoPP[NH]P had bound to F1 in the dark, it could be released by AdoPP[NH]P, ADP and ATP, but not at all by NAP4 or AMP. Furthermore, preincubation of F1 with unlabeled AdoPP[NH]P, ADP, or ATP prevented the covalent labeling of the enzyme by [3H]NAP4-AdoPP[NH]P upon photoirradiation. (3) Photoirradiation of F1 by [3H]NAP4-AdoPP[NH]P resulted in covalent photolabeling and concomitant inactivation of the enzyme. Full inactivation corresponded to the binding of about 2 mol [3H]NAP4-AdoPP[NH]Pmol F1. Photolabeling by NAP4-AdoPP[NH]P was much more efficient in the presence than in the absence of MgCl2. (4) Bound [3H]NAP4-AdoPP[NH]P was localized on the α- and β-subunits of F1. At low concentrations (less than 10 μM), bound [3H]NAP4-AdoPP[NH]P was predominantly localized on the α-subunit; at concentrations equal to, or greater than 75 μM, both α- and β-subunits were equally labeled. (5) The extent of inactivation was independent of the nature of the photolabeled subunit (α or β), suggesting that each of the two subunits, α and β, is required for the activity of F1. (6) The covalently photolabeled F1 was able to form a complex with aurovertin, as does native F1. The ADP-induced fluorescence enhancement was more severely inhibited than the fluorescence quenching caused by ATP. The percentage of inactivation of F1 was virtually the same as the percentage of inhibition of the ATP-induced fluorescence quenching, suggesting that fluorescence quenching is related to the binding of ATP to the catalytic site of F1.  相似文献   

7.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

8.
N,N′-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstitued mitochondrial cytochrome b-c1 complex. DCCD inhibits equally electron flow and proton translocation (i.e., the H+e? ratio is not affected) catalysed by the enzyme reconstituted into phospholipid vesicles. The inhibitory effects are accompanied by structural alterations in the polypeptide pattern of both isolated and reconstituted enzyme. Cross-linking was observed between subunits V (iron-sulfur protein) and VII, indicating that these polypeptides are in close proximity. A clear correlation was found between the kinetics of inhibition of enzymic activity and the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C]DCCD was also observed, to all subunits with the isolated enzyme and preferentially to cytochrome b with the reconstituted vesicles; in both cases, however, it was not correlated kinetically with the inhibition of the enzymic activity.  相似文献   

9.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

10.
(1) The total phospholipid content of a gradient purified (K+ + H+)-ATPase preparation from pig gastric mucosa is 105 μmol per 100 mg protein, and consists of 29% sphingomyelin, 29% phosphatidylcholine, 28% phosphatidylethanolamine, 10% phosphatidylserine and 4% phosphatidylinositol. The cholesterol content corresponds to 50 μmol per 100 mg protein. (2) Treatment with phospholipase C (from Clostridium welchii and Bacillus cereus) results in an immediate decrease of the phosphate content. Up to 50% of the phospholipids are hydrolyzed by each phospholipase C preparation alone, without further hydrolysis by increased phospholipase concentration or prolonged incubation time. Combined treatment with the two phospholipase C preparations, sequentially or simultaneously, hydrolyzes up to 65% of the phospholipids. (3) The (K+ + H+)-ATPase and K+ stimulated p-nitrophenylphosphatase activities are decreased proportionally with the total phospholipid content, indicating that these enzyme activities are dependent on phospholipids. (4) Phospholipase C treatment does not change optimal pH, Km value for ATP and temperature dependence of the gastric (K+ + H+)-ATPase, but slightly decreases the Ka value for K+. (5) Phospholipase C treatment lowers the AdoPP[NH]P binding and phosphorylation capacities, suggesting that inactivation occurs primarily on the substrate binding level. (6) Most of the results can be understood by assuming that hydrolysis of the phospholipids by phospholipase C leads to aggregation of the membrane protein molecules and complete inactivation of the aggregated ATPase molecules.  相似文献   

11.
The mean fixation index within subpopulations (FIS) has been defined as F̄IS = ∑wiFISior asF̂IS = ∑wipiqiFISi∑wipiqi. The latter definition is preferred because it can be obtained from the two other fixation indices, FST and FIT and because it is unaffected by the mean gene frequency. The expected frequency of heterozygotes in small subpopulations of dioecious organisms will exceed Hardy-Weinberg expectations and this can be measured by F̂IS. In an isolated subpopulation of constant variance effective size N, F̂IS rapidly tends to 1 − 4N2(N − 1 + [N2 + 1]12)2. In the Island model of population structure, F̂IS is approximately −(1 − m)Nwhere m is the immigration rate.When a sample is drawn from a natural population, the observed FIS will depend upon the genetic structure of the population. The values of FIS expected in three different types of population structure are discussed.  相似文献   

12.
Vacuolar-type H+-ATPase was solubilized from tonoplasts of mung bean (Vigna radiata L.) and purified on a Mono Q anion-exchange column by fast protein liquid chromatography. The purified enzyme was inactivated by the reactive adenine analog, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). This inactivation was reversed by addition of dithiothreitol (DTT). Inactivation by NBD-Cl was prevented by Mg-ADP, a competitive inhibitor of ATPase. [14C]NBD-Cl predominantly modified the 68-kilodalton subunit and the degree of 14C incorporation was decreased in the presence of Mg-ADP or upon subsequent addition of DTT. The loss of activity followed pseudo first-order kinetics with respect to NBD-Cl concentration, and double log plots of pseudo first-order rate constants versus reagent concentration yielded a straight line with a slope of 0.957. The NBD-modified/inactivated enzyme showed an absorbance maximum at 418 nanometers and a fluorescence emission peak at 515 nanometers. The absorption and fluorescence emission spectra of the NBD-modified enzyme were essentially the same as those of the model compound, N-acetyl-S-NBD cysteine. Absorbance by the modified enzyme at 418 nanometers disappeared upon addition of DTT, which coincided with the restoration of ATPase activity and the decrease in bound [14C]NBD-Cl. These findings show that NBD-Cl modifies an essential cysteine residue(s) at or near the catalytic site in the 68-kilodalton subunit of tonoplast H+-ATPase and that the modification closely correlates with the loss of ATPase activity.  相似文献   

13.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K121 = 0.12 μM) and the second had a comparatively low affinity (K212 = 49.5 μM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 μM). Calmodulin (12.5 μ/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 μM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

14.
The enthalpy of the bioluminescent reaction
FMNH2 + RCHO + O2luciferase FMN + RCOO + H3O+ + hv
has been studied by direct calorimetric methods. Bacterial luciferase, isolated from Beneckea harveyi (formerly strain MAV) has been used to catalyze the oxidation of reduced flavin mononucleotide (FMNH2) and a long chain aliphatic aldehyde (dodecanal, RCHO) by molecular oxygen to give the indicated products and blue-green light. The enthalpy measured for this process was found to be ΔHL = ?338.9 k.J (mol FMN)?1 (?81.0 kcal) at 25.00 °C and ?402.9 kJ (mol FMN)?1 (?96.3 kcal) at 7.00 °C. Calculations based on redox electrode potentials indicate a corresponding value of the free energy change, ΔGL = ?464.8 kJ (mol FMN)?1 (?111.1 kcal), at 25 °C. Measurements were performed in 0.15 m phosphate buffer, pH 7.0 and the values were arrived at by correcting the observed heats for the heat associated with the autoxidation process: FMNH2 + O2 ? FMN + H2O2; ΔHD = ?158.5 kJ (mol FMN)?1 (?37.8). These data and a detailed thermodynamic analysis have demonstrated the need for two parameters, referred to as the intrinsic free energy, ΔG1, and intrinsic enthalpy, ΔH1, which are functionally defined by the relations ΔGI = ΔGL ? uhvΔHI = ΔHL ? uhv, where u is the quantum yield of the reaction expressed in einsteins mole?1.These parameters reflect the thermochemistry of the bioluminescent reaction corrected for emitted photons. Thus, they are useful for comparing the thermochemistry of a chemiluminescent process. Their values for the bacterial luciferase system at 25 °C and pH 7.0 are ?391.6 and ?266.9 kJ (mol FMN)?1 (?93.6 and ?63.8 kcal), respectively, assuming a value of 0.3 for the quantum yield. The calorimetric data also suggest the existence of a long-lived species which persists after photon emission.  相似文献   

15.
(1) N-Ethylmaleimide (a penetrating SH- reagent) inactivated l-[14C]leucine entrance (binding and translocation) into Saccharomyces cerevisiae, the extent of inhibition depending on the time of preincubation with N-ethylmaleimide, N-ethylmaleimide concentration, the amino acid external and internal concentration, and the energization state of the yeast cells. With d-glucose-energized yeast, N-ethylmaleimide inhibited l-[14C]leucine entrance in all the assayed experimental conditions, but with starved yeast and low (0.1 mM) amino acid concentration, it did not inhibit l-[14C]leucine binding, except when the cells were preincubated with l-leucine. With the rho? respiratory-deficient mutant (energized cells), N-ethylmaleimide inhibited l[14C]leucine entrance as with the energized wild-type, though to a lesser extent. (2) Analysis of the N-ethylmaleimide effect as a function of l-[14C]leucine concentration showed a significant decrease of Jmax values of the high- (S1) and low- (S2) affinity amino acid transport systems, but KT values were not significantly modified. (3) When assayed in the presence of d-glucose, N-ethylmaleimide inhibition of d-glucose uptake and respiration contributed significantly to inactivation of l-[14C]leucine entrance. Pretreatment of yeast cells with 2,4-dinitrophenol enhanced the effect of l-[14C]leucine binding and translocation. (4) Bromoacetylsulfanilic acid and bromoacetylaminoisophthalic acid, two non-penetrating SH- reagents, did not inactivate l-[14C]leucine entrance, while p-chloromercuribenzoate, a slowly penetrating SH- reagent, inactivated it to a limited extent. When compared with the effect of N-ethylmaleimide, these negative results indicate that thiol groups of the l-[14C]leucine carrier were not exposed on the outer surface of the yeast cell permeability barrier.  相似文献   

16.
Human copper-zinc superoxide dismutase undergoes inactivation when exposed to O2? and H2O2 generated during the oxidation of acetaldehyde by xanthine oxidase at pH 7.4 and 37° C. In contrast, human manganese superoxide dismutase is not inactivated under the same conditions. Catalase and Mn-superoxide dismutase protect CuZn superoxide dismutase from inactivation. Similar protection is observed with hydroxyl radical (OH.) scavengers, such as formate and mannitol. In contrast, other OH. scavengers such as ethanol and tert-butyl alcohol, have no protective action. The latter results indicate that “free OH.” is not responsible for the inactivation. Furthermore, H2O2 generated during the oxidation of glucose by glucose oxidase, i.e., without production of O2?, does not induce CuZn superoxide dismutase inactivation. A mechanism accounting for this O2?H2O2-dependent inactivation of CuZn superoxide dismutase is proposed.  相似文献   

17.
Author index     
About ScienceDirect 《BBA》1982,682(3):369-371
The membrane-bound ATPase activity of Bacillus subtilis was inhibited by dicyclohexylcarbodiimide (DCCD). The DCCD-reactive proteolipid of B. subtilis was extracted, from labelled or untreated membranes containing F1 or depleted of F1, with neutral or acidic chloroform/methanol. Purification of the [14C]DCCD-binding proteolipid was attempted by column chromatography on methylated Sephadex G-50 and on DEAE-cellulose. The maximal amount of DCCD which could be bound to the purified proteolipid was found to exceed the amount bound by the purified proteolipid extracted from membranes labelled with the lowest [14C]DCCD concentration required for maximal inhibition of the membrane-bound ATPase activity. The radioactive protein peaks eluted by gel filtration and ion-exchange chromatography were analysed by urea-SDS polyacrylamide slab gel electrophoresis and autoradiography. Radioactivity was incorporated into two components of Mr 18 000 and 6000 when proteolipid was purified by methylated Sephadex. The 6000 polypeptide was always present, whatever the extraction and purification procedures. However, the 18 000 polypeptide was present in largest quantity only when proteolipid was extracted from membranes containing F1 and purified by methylated Sephadex. When proteolipid was purified on DEAE-cellulose this [14C]DCCD binding component of Mr 18 000 was absent.  相似文献   

18.
The distribution spaces at equilibrium for 3H2O, [14C]urea and 3-O-[14C]-methylglucose were measured in white fat cells using centrifugation through silicone oil at 2500 × g; no significant differences were observed. l-[14C] Glucose added immediately before the centrifugation was used as a marker for the extracellular water space. The calculated intracellular water content of the cells after the centrifugation through oil (e.g. 3H2O space minus l-[14C] glucose space) is an unbiased measure of the water content of the cells in suspension as judged by the following criteria: (1) The intracellular distribution space for 3-O-[14C]methylglucose at equilibrium (methylglucose space minus l-glucose space) was not different from that calculated from a methylglucose wash-out curve. (2) The intracellular content of l-[14C]glucose (half time of efflux about 60 min) in cells preloaded during incubation of the tissue with collagenase was not different in cells recovered by (a) centrifugation through oil at 2500 × g, (b) centrifugation through oil at 600 × g, (c) centrifugation at 600 × g in the absence of oil and (d) filtration on Millipore filters.The intracellular content of water determined on cells from single rats weighing 120–150 g was 2.75 ± 0.55 μl/100 μl fat cells (± S.D., n = 30). The intracellular content of potassium, determined on cells from the same rats, was 252 ± 62 nmols/100 μl fat cells (± S.D., n = 30). The concentration of potassium in the intracellular water was calculated as 104 ± 15 mM (± S.D., n = 30).  相似文献   

19.
M. Kitajima  W.L. Butler 《BBA》1975,376(1):105-115
The quenching action of dibromothymoquinone on fluorescence and on primary photochemistry was examined in chloroplasts at ?196 °C. Both the initial (F0) and final (FM) levels of fluorescence as well as the fluorescence of variable yield (Fv = FM ? F0) were quenched at ?196 °C to a degree which depended on the concentration of dibromothymoquinone added prior to freezing. The initial rate of photoreduction of C-550 at — 196 °C, which was assumed to be proportional to maximum yield for primary photochemistry, ?Po, was also decreased in the presence of dibromothymoquinone. Simple theory predicts that the ratio FVFM should equal ?Po. Excellent agreement was found in a comparison of relative values of ?Po with relative values of FVFM at various degrees of quenching by dibromothymoquinone. These results are taken to indicate that F0 and FV are the same type of fluorescence, both emanating from the bulk chlorophyll of Photosystem II.Dibromothymoquinone appears to create quenching centers in the bulk chlorophyll of Photosystem II which compete with the reaction centers for excitation energy. The rate constant for the quenching of excitation energy by dibromothymoquinone is directly proportional to the concentration of the quencher. Rate constants for the de-excitation of excited chlorophyll molecules by fluorescence, kF, by nonradiative decay processes, kD, by photochemistry, kP, and by the specific quenching of dibromothymoquinone, kQ, were calculated assuming the absolute yield of fluorescence at F0 to be either 0.02 or 0.05.  相似文献   

20.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号