首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10–8 to 10–6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10–6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10–10 m) and triiodothyronine (10–10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10–10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10–10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.  相似文献   

2.
The ability of seven fluorescence polarization probes (1,6-diphenyl-1,3,5-hexatriene, 1-[(4-trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene, (2-carboxyethyl)-1,6-diphenyl-1,3,5-hexatriene, 16(9-anthroyloxy)palmitic acid, CIS-parinaric acid, trans-parinaric acid and perylene) to report changes induced by temperature and Ca2+ in the plasma membrane of human platelets has been examined. The steady-state fluorescence anisotropy of the probes was compared after being incorporated into whole resting platelets, fragments of platelet plasma membrane and multilayers of lipids extracted from these membranes. In addition, we have investigated the molecular order and dynamics of the three preparations by time-resolved fluorescence depolarization of DPH and CE-DPH as a function of temperature and Ca2+ concentration. The high values of the order parameters found in intact platelets (SDPH, 36.c=0.70) were almost identical to those in membrane fragments and lipid vesicles, suggesting that lipid-lipid interactions and, therefore, the lipid composition are the main factors influencing the probe order parameter. Other lipid interactions such as those with membrane proteins and intracellular components have little effect on the SDP, in platelets. These measurements also showed that the stationary fluorescence anisotropy of DPH and CE-DPH in platelets is largely determined (80%) by the structural order of the lipid bilayer. Therefore, the previous microviscosity values based on stationary anisotropy data reflect the alignment and packing rather than the mobility of the bilayer components. The dynamic component of the anisotropy decay of these probes was analyzed in terms of the wobbling-in-cone model, allowing an estimation of the apparent viscosity of platelet plasma membrane (DPH, 36°C =–0–5 P) that is similar to that of the erythrocyte membrane. This value decreased substantially in multilayers of native lipids, indicating a large effect of the lipidprotein interactions on the probe dynamics within the bilayer. When the temperature was raised from 25° to 36°C a pronounced decrease was observed in the order parameter and apparent viscosity, followed by a tendency to level-off in the 36°-40°C interval. This may be related to the end-point of the lipid phase separation reported by Gordon et al. (1983). Finally, the rigidifying (lipid ordering) effect of Ca2+ on the platelet plasma membrane could also be observed by the fluorescence anisotropy measurements, in the form of an increase (2%) of the order parameter of CE-DPH for Ca2+ concentrations in the millimolar range.Abbreviations DPH 1,6-diphenyl-1,3,5-hexatriene - TMA-DPH 1-[(4-trimethyl-amino)phenyl]-6-phenyl-1,3,5-hexatriene - CE-DPH (2-carboxyethyl)-1,6-diphenyl-1,3,5-hexatriene - 16AP 16-(9-anthroyloxy)-palmitic acid; c-PnA, CIS-parinaric acid; t-PnA, trans-parinaric acid - PER perylene - POPOP p-bis[2(5-phenyl-oxazolyl)benzene] - ESR electron spin resonance Offprint requests to: A. U. Acuña  相似文献   

3.
Fluorescent lecithin probes containing cis- or trans-parinaric acid (PnA) at the 2-position cis-parinaroylphosphatidylcholine (cis-PnPC) and trans-parinaroyl phosphatidylcholine (trans-PnPC)) showed similar behavior to that of the free cis- or trans-parinaric acids (cis-PnA or trans-PnA) in bilayer vesicles of synthetic saturated lecithins. Transition temperatures detected by cis-PnPc were about 1°C lower than those observed with trans-PnPc. In mixed lecithin vesicles, the trans-PnPc probe monitored a higher temperature melting component than did the cis-probe. Both probes were readily incorporated into microsomal membranes and into sonicated vesicles prepared from the microsomal phospholipids. With either cis- or trans-PnPc no change in polarization ratio was observed for microsomal membranes between 40°C and 0°C but this ratio increased with decreasing temperature between 0°C and ?5°C. However, vesicles of extracted phospholipids showed a continuous increase in polarization ratio with decreasing temperature between 20°C and ?15°C with trans-PnPc and bewteen 5°C and ?15°C with cis-PnPc. These results suggest that the two lecithin probes monitor different environments in the membranes and phospholipid vesicles prepared from them.  相似文献   

4.
The cis-isomer of parinaric acid, a naturally occurring C-18 polyene fatty acid, was incubated with brain subcellular fractions and the polarization of fluorescence increased in a time dependent manner. Greatest increases occurred in synaptosomal and microsomal membranes. This increase in polarization of fluorescence was found with the cis, but not the trans, isomer of parinaric acid and required Mg2+ or Ca2+ and was stimulated by coenzyme A and ATP. Synaptosomes were incubated with cis-parinaric acid and lipids were extracted and examined by high performance liquid chromatography. The highest incorporations of cis-parinaric acid were found in phosphatidylcholine (71%) and phosphatidylethanolamine (20%) while only traces were found in phosphatidylserine and phosphatidylinositol. [3H]Oleic acid was also incorporated into membrane phospholipids and unlabeled oleic acid blocked incorporation of cis-parinaric acid. It is proposed that cis-parinaric acid, like fatty acids normally found in brain, is incorporated into membrane phospholipids by an acyl-CoA acyltransferase. The presence of this enzyme in nervous tissue may make it possible to easily introduce fluorescent fatty acid probes into membrane phospholipids and to thereby facilitate study of membrane-mediated processes.  相似文献   

5.
《Biophysical journal》2022,121(7):1143-1155
Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho-containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10′,10′-d2-LacCer and 18′,18′,18′-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60°C, whereas the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, whereas the liquid-ordered domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron to nano-scale small domains in the liquid crystalline domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid and trans-parinaric acid-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.  相似文献   

6.
Metastasis is major cause of malignant cancer-associated mortality. Fucoxanthin has effect on various pharmacological activities including anti-cancer activity. However, the inhibitory effect of fucoxanthin on cancer metastasis remains unclear. Here, we show that fucoxanthin isolated from brown alga Saccharina japonica has anti-metastatic activity. To check anti-metastatic properties of fucoxanthin, in vitro models including assays for invasion, migration, actin fiber organization and cancer cell–endothelial cell interaction were used. Fucoxanthin inhibited the expression and secretion of MMP-9 which plays a critical role in tumor invasion and migration, and also suppressed invasion of highly metastatic B16-F10 melanoma cells as evidenced by transwell invasion assay. In addition, fucoxanthin diminished the expressions of the cell surface glycoprotein CD44 and CXC chemokine receptor-4 (CXCR4) which play roles in migration, invasion and cancer–endothelial cell adhesion. Fucoxanthin markedly suppressed cell migration in wound healing assay and inhibited actin fiber formation. The adhesion of B16-F10 melanoma cells to the endothelial cells was significantly inhibited by fucoxanthin. Moreover, in experimental lung metastasis in vivo assay, fucoxanthin resulted in significant reduction of tumor nodules. Taken together, we demonstrate, for the first time, that fucoxanthin suppresses metastasis of highly metastatic B16-F10 melanoma cells in vitro and in vivo.  相似文献   

7.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0°C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospholipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at ?25°C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

8.
The role of glycoconjugates in cell surface and blood-borne implantation properties of murine metastatic melanoma sublines of low (B16-F1) or high (B 16-F10) potential to colonize lungs was investigated by treating melanoma cells with the antibiotic tunicamycin. This drug prevents glycosylation of glycoproteins by inhibiting the formation of lipid-linked oligosaccharide precursors. The degree of tunicamycin-mediated modifications in glycoproteins was assessed by monitoring the decrease in cell surface sialogalactoproteins by binding of 125I-labeled Ricinus communis agglutinin I. Scanning electron microscopy of tunicamycin-treated B16-F1 and B16-F10 cells showed morphologic changes such as cell rounding and formation of numerous surface blebs. Tunicamycin-treated B16-F1 and B16-F10 cells lost their lung colonization abilities when injected intravenously into C57BL/6 mice, concomitant with lowered rates of adhesion to endothelial cell monolayers, endothelial extracellular matrix (basal lamina), and polyvinyl-immobilized fibronectin in vitro, suggesting that this drug inhibits experimental metastasis by modifying the surface glycoproteins involved in determining the adhesive properties of malignant cells.  相似文献   

9.
Changes in membrane properties during the differentiation process in K562 cells have been investigated. A decrease of lectin-induced agglutination has been detected. The agglutination assay revealed to be an early and sensitive test to monitor the induced differentiation of the K562 cells. Naturally occurring fluorescent fatty acids (cis- and trans-parinaric acids) and the recently developed multifrequency phase and modulation technique were used to study cell membrane properties. Changes in fluorescence lifetime and polarization are clearly associated with cell differentiation, suggesting the involvement of the cellular plasma membrane in the differentiation process.  相似文献   

10.
Changes in the molecular organization of membranes in pericarp cells of ripening tomato fruit were examined by fluorescence depolarization after labeling with fluorescent lipid-soluble probes. The fluorescent labels were partitioned into isolated protoplasts and purified plastids from fruit at various stages of senescence. Values for steady-state anisotropy (rss) of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled protoplasts rose progressively during the early stages of ripening over a time frame that overlapped the climacteric rise in ethylene production. This can be interpreted as reflecting a decrease in the lipid fluidity of primarily plasma membrane. By contrast, there was no significant change during ripening in rss for plastid membranes labeled with DPH, 1-[4-trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), and cis- or trans-parinaric acid. Nor was there any change during ripening in the limiting fluorescence anisotropy (roo) and order parameter (S) for plastids labeled with DPH or TMA-DPH, parameters that are corrected for any differences in lifetime. Some degree of lifetime heterogeneity, possibly reflecting structurally distinct domains, was discerned in both young and senescent plastids that had been labeled with DPH or TMA-DPH, but this also did not change as ripening progressed. Thus membranes of the pericarp cells sustain different fates as the tomato fruit ripens, implying that there are distinguishable mechanisms of membrane deterioration in senescing tissues.  相似文献   

11.
The fluorescence anisotropy decay of four different probes in bilayers of dimyristoylphosphatidylcholine was measured. The probes are diphenylhexatriene, diphenyloctatetraene, trimethylaminodiphenylhexatriene, and trans-parinaric acid. The data for each probe were analyzed in terms of two orientational order parameters, the ordinary order parameter and a higher one, and two rotational diffusion coefficients. The order parameters are largely independent of probe size, but depend on the position of the probes along the membrane normal, thus reflecting the profile of lipid order. If a probe is located in the plateau region of lipid order, its order parameters are interpreted as representing the rigid-body order of lipids. According to this interpretation, the total lipid order in the plateau region originates about equally from rigid-body order and conformational order. The two order parameters obtained for each probe are used to derive approximate angular distributions of the probe molecules. The diffusion coefficient for rotation about the long molecular axis is found to be infinitely large, indicating unhindered rotation about this axis. The diffusion coefficient for rotation about the short molecular axes is evaluated for a viscosity which results as 0.2 poise. This viscosity for rotational diffusion is an order of magnitude smaller than the viscosity for lateral diffusion indicating that at least two viscosities are required to characterize the fluidity of a lipid membrane.Abbreviations FAD fluorescence anisotropy decay - DMR deuterium magnetic resonance - ESR electron spin resonance - DMPC dimyristoylphosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - DPH 1,6-diphenyl-1,3,5-hexatriene - DPO 1,6-diphenyl-1,3,5,7-octatetraene - TMA-DPH 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene - tPnA trans-parinaric acid - NPN N-phenyl-1-naphthylamine - BBO 2,5-bis(4-biphenylyl)oxazole  相似文献   

12.
Insulin increased the lipid order of rat and mouse liver plasma membrane domains sampled by the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in a concentration-dependent saturable manner. The ordering is half maximal at 5.1 · 10?11M and fully saturated at 1.7 · 10?10M insulin. Membranes prepared from obese hyperglycemic (ob / ob) mice demonstrated a right-shift in the dose-dependent ordering induced by insulin, such that ordering was half maximal at 1.2 · 10?10M and fully saturated at 2.0 · 10?10M. Insulin also increased the order of rat liver plasma membranes labeled with the cis- and trans-parinaric acid methyl esters. The ordering caused by insulin as detected with cis methyl parinarate was complete within approx. 15 min. after hormone addition at 37°C, and the ordering was approximately double that observed with the trans isomer. Additional ESR experiments demonstrated that the addition of insulin increased the outer hyperfine splittings of spectra recorded from membranes labeled with the steroid-like spin labels, nitroxide cholestane and nitroxide androstane, but not the fatty acid spin probe, 5-nitroxide stearate. Studies utilizing model membrane systems strongly suggest that the 5-nitroxide stearate samples a cholesterol-poor domain of the membrane, while the steroid-like probes preferentially sample cholesterol-rich regions of the membrane. Finally, insulin-induced membrane ordering was dose-dependently inhibited by cytochalasin B in the range 1–50 μM. From these results, we conclude that (1) the ordering effect of insulin addition to isolated liver plasma membrane fractions occurs within the physiological range of hormone concentration, and the dose-response is right-shifted in membranes from ‘insulin resistant’ animals; (2) the relative responses of the fluorescent and spin probes suggest that the effects of insulin are confined to specific domains within the membrane matrix; and (3) the direct effects of insulin on the membranes may involve protein components having cytochalasin B binding sites.  相似文献   

13.
We have investigated the complex behaviour of the time resolved fluorescence intensity and anisotropy of trans-parinaric acid, incorporated into fragments of the plasma membrane of human platelets and in multibilayers of lipids extracted from that membrane. It is shown that the observation of anisotropies that increase at long times can be satisfactorily interpreted by assuming two populations of the fluorescence probe with distinct lifetimes, rotational relaxation times and order parameters. The heterogeneous probe distribution was correlated with a similar heterogeneity in the lipid composition of the bilayer, modulated by temperature. Below 35°C an important fraction of the lipids of the plasma membrane are apparently in the form of solid-like domains (20% at 20°C). However, in the physiological temperature range that solid/fluid heterogeneity is almost negligible. Since these effects were also observed in multibilayers of lipids from the platelet membrane, the formation of solid-like clusters appears to arise from lipid-lipid interactions only, and most probably involving cholesterol. These results support the previous finding of a lateral phase separation for temperatures less than 37°C described by Gordon et al. (1983) in a spin-probe study of the platelet plasma membrane.Abbreviations DPH 1,6-diphenyl-1,3,5-hexatriene - DPPC dipalmitoyl-phosphatidylcholine - tPnA trans-parinaric acid Offprint requests to: A. U. Acuña  相似文献   

14.
Metastatic colonization of a secondary organ site is initiated by the attachment of blood-borne tumor cells to organ-specific adhesion molecules expressed on the surface of microvascular endothelial cells. Using digital video imaging microscopy and fluorescence activated cell sorting techniques, we show here that highly metastatic cells (B16-F10 murine melanoma and R3230AC-MET rat mammary adenocarcinoma cells) previously labeled with the fluorescent dye BCECF begin to transfer dye to endothelial cell monolayers shortly after adhesion is established. The extent of BCECF transfer to endothelial cell monolayers is dependent upon the number of BCECF-labeled tumor cells seeded onto the endothelial cell monolayer and the time of coculture of the two cell types, as visualized by an increase in the number of BCECF-positive cells among cells stained with an endothelial cell-specific mAb. Dye transfer to BAEC monolayers proceeds with a progressive loss of fluorescence intensity in the BCECF-labeled tumor cell population with time of coculture. The transfer of dye is bidirectional and sensitive to inhibition by 1-heptanol. In contrast, poorly metastatic B16-F0 melanoma cells and non-metastatic R3230AC-LR mammary adenocarcinoma cells do not efficiently couple with vascular endothelial cells. It is inferred from these experiments and from the amounts of connexin43 mRNA expressed by tumor cells that tumor cell/endothelial cell communication is mediated by gap junctional channels and that this interaction may play a critical role in tumor cell extravasation at secondary sites.  相似文献   

15.
The lipid composition and transbilayer distribution of plasma membrane isolated from primary tumor (L-929, LM, A-9 and C3H) and nine metastatic cell lines cultured under identical conditions was examined. Cultured primary tumor and metastatic cells differed two-fold in sterol/phospholipid molar ratios. There was a direct correlation between plasma membrane anionic phospholipid (phosphatidylinositol and phosphatidylserine) content and plasma membrane sterol/phospholipid ratio. This finding may bear on the possible link between oncogenes and inositol lipids. The fluorescent sterol, dehydroergosterol, was incorporated into primary tumor and metastatic cell lines. Selective quenching of outer monolayer fluorescence by covalently linked trinitrophenyl groups demonstrated an asymmetric transbilayer distribution of sterol in the plasma membranes. The inner monolayer of the plasma membranes from both cultured primary and metastatic tumor cells was enriched in sterol as compared with the outer monolayer. Consistent with this, the inner monolayer was distinctly more rigid as determined by the limiting anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Dehydroergosterol fluorescence was temperature dependent and sensitive to lateral phase separations in phosphatidylcholine vesicles and in LM cell plasma membranes. Dehydroergosterol detected phase separations near 24 degrees C in the outer monolayer and at 21 degrees C and 37 degrees C in the inner monolayer of LM plasma membranes. Yet, no change in transbilayer sterol distribution was detected in ascending or descending temperature scans between 4 and 45 degrees C. Alterations in plasma membrane phospholipid polar head group composition by choline analogues (N,N-dimethylethanolamine, N-methylethanolamine, and ethanolamine) also did not perturb transbilayer sterol asymmetry. Treatment with phenobarbital or prilocaine, drugs that selectively fluidize the outer and inner monolayer of LM plasma membranes, respectively, did not change dehydroergosterol transbilayer distribution.  相似文献   

16.
We characterized the metastatic ability and mortality of four different mouse melanoma cell lines, B16-F0, -F1, -F10 and -BL6. B16-F0 is the parent cell line. B16-F1 was obtained by a one-time selective procedure and B16-F10 by a ten-time selective procedure using Fidler's method. B16-BL6 derived from B16-F10 has much more invasive activity than B16-F10. To investigate the difference in mortal malignancy among B16-F0, -F1, -F10 and -BL6, we examined the survival time of syngeneic C57BL/6Cr mice intravenously inoculated with these cells. As a control, we used the C57BL/6J-embryo mouse fibroblast-like semi-normal cell line. The ability to form lung metastatic nodules in mice gradually increased in the order: B16-F0, -F1, and -F10 (=-BL6). C57BL/6J-embryo cell (1 x 10(5)/mouse)-inoculated mice survived for over 46 days. B16-F0, -F1, -F10 and -BL6 (1 x 10(5)/mouse)-inoculated mice survived 31.4+/-4.4 (7), 25.7+/-2.8 (7), 23.6+/-1.5 (7) and 25.3+/-2.3 (7) days [mean+/-S.D. (number of mice)], respectively. According to the Mann-Whitney test, the B16-F0 inoculated group versus -F1 inoculated group (P<0.05), -F0 inoculated group versus -BL6 inoculated group (P<0.05), and -F0 inoculated group versus -F10 inoculated group (P<0.01) were significantly different, but the B16-F1 group versus -F10 group, -F1 group versus -BL6 group, and -F10 group versus -BL6 group were not. These results suggest that mortal malignancy is not necessarily correlated with lung-colonizing potential and even only one-time selected B16-F0 mouse melanoma cells are useful as an experimental metastatic model in vivo.  相似文献   

17.
Summary In this article, I review the current information concerning the partition of the fluorescent probes, cis-parinaric acid (9, 11, 13, 15-cis, trans, trans, cis-octadecatetraenoic acid) and trans-parinaric acid (9, 11, 13, 15-all trans-octadecatetraenoic acid) among aqueous, solid lipid, and fluid lipid phases. The association of these probes with lipid is described by a mole fraction partition coefficient whose value is typically in the range of 1–5 × 106, a reasonable value in light of partition coefficients for other fatty acids between hydrophobic phases and water. The partition coefficient, in the absence of lipid phase changes, is relatively independent of temperature and only slightly dependent on the total aqueous probe concentration.In lipid samples which contain coexisting fluid and solid phases, trans-parinaric acid preferentially partitions into the solid phase, while cis-parinaric acid distributes nearly equally between fluid and solid phases. This partition behavior probably arises from the molecular shape of the cis and trans parinaric acid isomers. From measurements of the polarization of fluorescence of cis and trans parinaric acid in mixed lipid systems or membranes it is possible to evaluate the proportion of lipid components involved in phase changes or phase separation. From fluorescence energy transfer between protein typtophan residues and the parinaric acid isomers it is possible to gain information about the organization of lipids and proteins in membranes and model systems. I close the review by considering some of the membrane research areas where these probes and their various lipid derivatives may be particularly useful.  相似文献   

18.
F Khalil  L Hopp 《Cytobios》1985,42(166):117-123
The rate of postreplication repair of the B16-F1 and the B16-F10 variant clones was compared to the parent B16CL4 mouse melanoma cells in an attempt to correlate the postreplication repair efficiency with the metastatic potential of these melanoma cells. The rate of postreplication repair of the B16-F10 subline was 47% higher than that of the parent B16CL4 mouse melanoma cells and 20% higher than that of the B16-F1 cells. This higher rate of postreplication repair in the B16-F10 cells correlates with its higher metastatic potential. It was also of interest to notice that the rate of postreplication repair of the B16-F1 and the B16-F10 cells are comparable to their rate of replicon joining in non-irradiated cells, in contrast to the parent B16CL4 cells whose rate of post-replication repair was significantly lower than its rate of replicon joining.  相似文献   

19.
Acurhagin-C, a Glu–Cys–Asp (ECD)-disintegrin from Agkistrodon acutus venom, has been reported as an endothelial apoptosis inducer, previously. Here we further evaluate its potential applications in cancer therapy. In vitro assays indicated that acurhagin-C not only may influence the cell viability at higher concentration, but also can potently and dose-dependently decrease cell proliferation in murine B16-F10 melanoma. Otherwise, it also had a dose-dependent inhibition on B16-F10 cell adhesion to extracellular matrices, collagen VI, gelatin B and fibronectin, as well as disturbed transendothelial migration of B16-F10 cell. Morphological study found that acurhagin-C dramatically affected B16-F10 cell adhesion to immobilized fibronectin, leading to the formation of multicellular aggregates with rounded shape. Detected by flow cytometry, acurhagin-C was able to induce B16-F10 cell apoptosis and alter cell cycle distribution through its interactions with integrins αv/α5, and thereafter initiation the apoptotic pathways of caspase-8/-9. Furthermore, acurhagin-C could synergistically enhance the anti-proliferative activity of methotrexate in B16-F10 cells and human melanoma SK-MEL-1 cells, without diminishing the growth of human epidermal melanocytes. Taken together, acurhagin-C proved to be a potent inhibitor of integrin-based functions in melanoma cells by activating the complex apoptotic pathways.  相似文献   

20.
H Sadano  S Taniguchi  T Baba 《FEBS letters》1990,271(1-2):23-27
Low metastatic parent B16 melanoma and isolated B16-F1 cell lines have a third actin designated as beta m(Ax:previously). beta m actin is scantily or not at all detected in highly metastatic cell lines, such as B16-F10 and BL6. To directly assess the physiological role of beta m in phenotypic changes of B16 melanoma, we transfected expression plasmids of beta m into B16-F10 cells. The actin expressed in the transfectants is located largely in cytoskeletal fractions. The transfectants exhibited a larger number of stress fibers and a lower invasiveness than did the recipient cells. Thus, beta m actin plays an important role in the organization of actin stress fibers, the result being a decrease in invasiveness of B16 melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号