首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Single-turnover flash-induced ATP synthesis in chloroplasts was measured in situ with the luciferin luminescence method. In dark-adapted chloroplasts the first flashes only induce ATP hydrolysis. Once the reversible ATPase is fully activated, ATP hydrolysis persists for extended periods of darkness and flash-induced ATP-synthesis is optimal even at flash frequencies lower than 0.1 Hz. About one molecule of ATP is formed per 1000 chlorophyll and flash. In a low frequency flashing regime under steady state conditions, the newly formed ATP is stable. There is no threshold light intensity for flash-induced ATP synthesis. The data are in agreement with models involving short-range interaction between electron transport and the coupling factor.  相似文献   

2.
1. ATP synthesis (monitored by luciferin-luciferase) can be elicited by a single turnover flash of saturating intensity in chromatophores from Rhodopseudomonas capsulata, Kb1. The ATP yield from the first to the fourth turnover is strongly influenced by the phosphate potential: at high phosphate potential (?11.5 kcal/mol) no ATP is formed in the first three turnovers while at lower phosphate potential (?8.2 kcal/mol) the yield in the first flash is already one half of the maximum, which is reached after 2–3 turnovers.2. The response to ionophores indicates that the driving force for ATP synthesis in the first 20 turnovers is mainly given by a membrane potential. The amplitude of the carotenoid band shift shows that during a train of flashes an increasing ΔΨ is built up, which reaches a stationary level after a few turnovers; at high phosphate potential, therefore, more turnovers of the same photosynthetic unit are required to overcome an energetic threshold.3. After several (six to seven) flashes the ATP yield becomes constant, independently from the phosphate potential; the yield varies, however, as a function of dark time (td) between flashes, with an optimum for td = 160–320 ms.4. The decay kinetics of the high energy state generated by a long (125 ms) flash have been studied directly measuring the ATP yield produced in post-illumination by one single turnover flash, under conditions of phosphate potential (?10 kcal/mol), which will not allow ATP formation by one single turnover. The high energy state decays within 20 s after the illumination. The decay rate is strongly accelerated by 10?8 M valinomycin.5. Under all the experimental conditions described, the amplitude of the carotenoid signal correlates univocally with the ATP yield per flash, demonstrating that this signal monitores accurately an energetic state of the membrane directly involved in ATP synthesis.6. Although values of the carotenoid signal much larger than the minimal threshold are present, relax slowly, and contribute to the energy input for phosphorylation, no ATP is formed unless electron flow is induced by a single turnover flash.7. The conclusions drawn are independent from the assumption that a ΔΨ between bulk phases is evaluable from the carotenoid signal.  相似文献   

3.
The yield of P-700 photooxidation has been studied in isolated chloroplast membranes by measuring the extent of the flash-induced absorption increase at 820 nm (ΔA820) in the microsecond time range. The extent of ΔA820 induced by non-saturating laser flashes was increased by the following treatments. (1) Suspension of chloroplast membranes in Mg2+ free medium (plus 15 mM K+) which leads to unstacking of grana (as detected by a decrease in chlorophyll fluorescence). (2) Reduction of Q, the primary acceptor of Photosystem II, in the presence of 20 μM 3-(3,4 dichlorophenyl)-1,1-dimethylurea by a saturating xenon flash, fired 300 ms before the laser flash. (3) Phosphorylation of light harvesting chlorophyll ab-protein complex, which occurs in the presence of ATP after activation of protein kinase in the dark with NADPH and ferredoxin. We conclude that the Mg2+ concentration, the redox state of Q and the protein-phosphorylation all can control the photochemical efficiency of P-700 photooxidation in isolated chloroplasts, and we discuss these results in relation to control of excitation energy distribution between the two photosystems. We also discuss the significance of these results in relation to the regulation of photosynthetic electron transport in vivo.  相似文献   

4.
G. Renger  B. Hanssum  H. Gleiter  H. Koike  Y. Inoue 《BBA》1988,936(3):435-446
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed.  相似文献   

5.
In order to examine whether the two photosystems, PS I and PS II, are organized in specific electron transporting pairs, or randomly transport electrons from PS II to PS I, the photosystems imbalance of photoactivities (Emerson enhancement) was measured by modulated fluorimetry under different degrees of PS II inhibition in broken chloroplasts, where the granal structures were preserved by the presence of 5 mM MgCl. The results indicate a lack of any measurable specific functional pairing between individual PS I and PS II, in contrast to a previous research work in leaves (Malkin et al. 1986, Photosynth. Res. 10: 291–296). These results and this discrepancy are further discussed.  相似文献   

6.
Single-turnover flash-induced ATP synthesis coupled to natural cyclic electron flow in Photosystem I-enriched subchloroplast vesicles (from spinach) was continuously followed by the luciferin-luciferase luminescence. The ATP yield per flash was maximal (1 ATP per s per 1000 Chl) around a flash frequency of 0.5–2 Hz. It decreased both at lower and higher flash frequencies. The decrease at high flash frequency was due to limitation by the electron-transfer rate, while the decrease at low flash frequency was directly due to intrinsic properties of the ATPase itself. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) decreased the yield at low frequency more than at high frequency. The same behaviour was observed if electron transfer was artificially mediated by pyocyanin. If the ADP concentration was increased from 40 to at least 80 μM, or if the vesicles were preincubated with 5 mM dithiothreitol (DTT), the decrease of the yield at flash frequencies below 0.5 Hz was no longer observed. Incubation with DTT increased the rates of ATP hydrolysis and synthesis at any flash frequency. The decrease of the yield could be elicited again by addition of 50 nM FCCP. It is concluded that at low levels of the protonmotive force (Δ gmH+), the ATPase is converted into an active ATP-hydrolyzing state in which ATP synthesis activity is decreased due to a decreased affinity towards ADP and/or to a decreased release of newly synthesized ATP, that can be cancelled by increasing the ADP concentration or by addition of DTT in the absence of uncoupler.  相似文献   

7.
Weak red light-induced changes in chlorophyll fluorescence parameters and in the distribution of PS I and PS II in thylakoid membranes were measured in wheat leaves to investigate effective ways to alter the excitation energy distribution between the two photosystems during state transition in vivo. Both the chlorophyll fluorescence parameter Fm/Fo and F685/F735, the ratio of fluorescence yields of the two photosystems at low temperature (77 K), decreased when wheat leaves were illuminated by weak red light of 640 nm, however, Fm/Fo decreased to its minimum in a shorter time than F685/F735. When Photosystem (PS II) thylakoid (BBY) membranes from adequately dark-adapted leaves (control) and from red light-illuminated leaves were subjected to SDS-polyacrylamide gel electrophoresis under mildly denaturing conditions, PS I was almost absent in the control, but was present in the membranes from the leaves preilluminated with the weak red light. In consonance with this result, the content of Cu, measured by means of the energy dispersive X-ray microanalysis (EDX), increased in the central region, but decreased in the margin of the grana stacks from the leaves preilluminated by the red light as compared with the control. It is therefore suggested that: (i) both spillover and absorption cross-section changes are effective ways to alter the excitation energy distribution between the two photosystems during state transitions in vivo, and the change in spillover has a quicker response to the unbalanced light absorption of the two photosystems than the change in light absorption cross-section, and (ii) the migration of PS I towards the central region of grana stack during the transition to state 2 leads to the enhancement of excitation energy spillover from PS II to PS I.  相似文献   

8.
Photosystem II (PS II) of plants and cyanobacteria, which catalyzes the light-induced splitting of water and the release of oxygen, is the primary source of oxygen in the earth atmosphere. When activated by short light flashes, oxygen release in PS II occurs periodically with maxima after the third and the seventh flashes. Many other processes, including chlorophyll (Chl) t a fluorescence, are also modulated with period of four, reflecting their sensitivity to the activity of Photosystem II. A new approach has been developed for the analysis of the flash-induced fluorescence of Chl t a in plants, which is based on the use of the generalized Stern–Volmer equation for multiple quenchers. When applied to spinach thylakoids, this analysis reveals the presence of a new quencher of fluorescence whose amplitude is characterized by a periodicity of four with maxima after the third and the seventh flashes, in phase with oxygen release. The quencher appears with a delay of 0.5 ms followed by a rise time of 1.2–2 ms at pH 7, also in agreement with the expected time for oxygen evolution. It is concluded that the quencher is a product of the reaction leading to the oxygen evolution in PS II. The same quenching activity, maximal after the third flash, could be seen in dark adapted leaves, and provides the first fully time-resolved measurement of the kinetics of the oxygen evolution step in the leaf. Thus, the non-invasive probe of Chl t a fluorescence provides a new and sensitive method for measuring the kinetics of oxygen evolution with potential for use in plants and cyanobacteria t in vivo.  相似文献   

9.
10.
Reaction center concentrations were determined in chloroplasts of tobacco, cv John William's Broadleaf, and its mutants Su/su and Su/su var. Aurea. Quantum yields of the primary reactions of Photosystems I, IIα and IIβ (Melis, A. and Homann, P.H. (1975) Photochem. Photobiol. 21, 431–437) were obtained by measurement of their rate constants and the absorbed energy, under conditions where all three photosystems operated simultaneously and produced almost irreversibly a single charge separation.The concentrations and reaction rates of the photosystems were different in chloroplasts from the wild type and the mutants, but in chloroplasts of each type of plant used essentially all quanta absorbed by chlorophyll caused a charge separation in PS I, PS IIα or PS IIβ. Since the quantum efficiency of each photosystem was close to one, kinetic differences between the photosystems and between different kinds of chloroplasts were only due to differences in antenna size. From the rate constants the number of chlorophyll molecules in the antenna of each photosystem could be calculated. It is argued that PS IIα and PS IIβ must be different, independent structures.  相似文献   

11.
Photosynthetic control describes the processes that serve to modify chloroplast membrane reactions in order to co-ordinate the synthesis of ATP and NADPH with the rate at which these metabolites can be used in carbon metabolism. At low irradiance, optimisation of the use of excitation energy is required, while at high irradiance photosynthetic control serves to dissipate excess excitation energy when the potential rate of ATP and NADPH synthesis exceed demand. The balance between pH, ATP synthesis and redox state adjusts supply to demand such that the [ATP]/[ADP] and [NADPH]/[NADP+] ratios are remarkably constant in steady-state conditions and modulation of electron transport occurs without extreme fluctuations in these pools.Abbreviations FBPase Fructose-1,6-bisphosphatase - PS I Photosystem I - PS II Photosystem II - Pi inorganic phosphate - PGA glycerate 3-phosphate - PQ plastoquinone - QA the bound quinone electron acceptor of PS II - qP Photochemical quenching of chlorophyll fluorescence associated with the oxidation of QA - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching associated with the high energy state of the membrane - RuBP ribulose-1,5-bisphosphate - TP triose phosphate - intrinsic quantum yield of PS II - quantum yield of electron transport - quantum yield of CO2 assimilation  相似文献   

12.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

13.
Addition of ATP to chloroplasts causes a reversible 25–30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at ?196°C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (Fo) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.  相似文献   

14.
15.
W.P. Williams  Z. Salamon 《BBA》1976,430(2):282-299
Studies of the variability of enhancement in Chlorella pyrenoidosa confirm the existence of two types of variability: a very slow diurnal variation linked to the growth cycle and a much more rapid adaptive response to the immediate incident light conditions (State I–State II transitions). Measurements of the wavelength dependencies and relative contributions of these two types of variability suggest that they may be linked.A close examination of the enhancement signals associated with the State I–State II transition reveals that the transitions can take place in any one of three ways: by a change in Photosystem II efficiency alone, by a change in Photosystem I efficiency alone or by a simultaneous change in the efficiencies of both photosystems.Measurements of the rates of transition between State I, State II and the dark adapted state, Dark, suggest that the behaviour of State II and Dark are normally, but not always, identical. The transitions between the three states were found to be first order. For those samples exhibiting the same behaviour in Dark and State II, the rate of the State I–State II transition was found to be independent of the wavelength of Light II, suggesting that the return from State I to State II is essentially a dark process and that the driving force for the adaptive transition is the over-stimulation of Photosystem I.Finally, a model is proposed, involving an antagonistic control of the quantum yields of photochemistry of the two photosystems, that is capable of explaining the links between the two types of variability, their wavelength dependencies and the shapes of the individual enhancement signals.  相似文献   

16.
Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320–330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution in the presence of DCBQ or DMBQ support the conclusion that inactive Photosystem II complexes have a functional water oxidation system.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - Fo initial fluorescence level using dark-adapted thylakoids - Inactive reaction centers reaction centers inactive in plastoquinone reduction - PS II Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II Department of Plant Biology, University of IllinoisDepartment of Physiology & Biophysics, University of Illinois  相似文献   

17.
In addition to the linear electron transport, several alternative Photosystem I-driven (PS I) electron pathways recycle the electrons to the intersystem electron carriers mediated by either ferredoxin:NADPH reductase, NAD(P)H dehydrogenase, or putative ferredoxin:plastoquinone reductase. The following functions have been proposed for these pathways: adjustment of ATP/NADPH ratio required for CO(2) fixation, generation of the proton gradient for the down-regulation of Photosystem II (PS II), and ATP supply the active transport of inorganic carbon in algal cells. Unlike ferredoxin-dependent cyclic electron transport, the pathways supported by NAD(P)H can function in the dark and are likely involved in chlororespiratory-dependent energization of the thylakoid membrane. This energization may support carotenoid biosynthesis and/or maintain thylakoid ATPase in active state. Active operation of ferredoxin-dependent cyclic electron transport requires moderate reduction of both the intersystem electron carriers and the acceptor side of PS I, whereas the rate of NAD(P)H-dependent pathways under light depends largely on NAD(P)H accumulation in the stroma. Environmental stresses such as photoinhibition, high temperatures, drought, or high salinity stimulated the activity of alternative PS I-driven electron transport pathways. Thus, the energetic and regulatory functions of PS I-driven pathways must be an integral part of photosynthetic organisms and provides additional flexibility to environmental stress.  相似文献   

18.
19.
Phycobilisomes (PBS) are the major light-harvesting, protein-pigment complexes in cyanobacteria and red algae. PBS absorb and transfer light energy to photosystem (PS) II as well as PS I, and the distribution of light energy from PBS to the two photosystems is regulated by light conditions through a mechanism known as state transitions. In this study the quantum efficiency of excitation energy transfer from PBS to PS I in the cyanobacterium Synechococcus sp. PCC 7002 was determined, and the results showed that energy transfer from PBS to PS I is extremely efficient. The results further demonstrated that energy transfer from PBS to PS I occurred directly and that efficient energy transfer was dependent upon the allophycocyanin-B alpha subunit, ApcD. In the absence of ApcD, cells were unable to perform state transitions and were trapped in state 1. Action spectra showed that light energy transfer from PBS to PS I was severely impaired in the absence of ApcD. An apcD mutant grew more slowly than the wild type in light preferentially absorbed by phycobiliproteins and was more sensitive to high light intensity. On the other hand, a mutant lacking ApcF, which is required for efficient energy transfer from PBS to PS II, showed greater resistance to high light treatment. Therefore, state transitions in cyanobacteria have two roles: (1) they regulate light energy distribution between the two photosystems; and (2) they help to protect cells from the effects of light energy excess at high light intensities.  相似文献   

20.
U. Schreiber 《BBA》1984,767(1):80-86
A comparative study of the ATP-induced and the DCMU-induced increases of dark chlorophyll fluorescence after activation of the latent ATPase gave the following results: (1) The ATP-induced fluorescence rise exceeds the DCMU-induced rise by an amount equivalent to the rapid component of the biphasic ATP-induced change. There is complementarity between the slow component and any preceding DCMU-induced fluorescence rise. (2) Up to 10?4 M DCMU (3-(3′,4′-dichlorophenyl)-1,1′-dimethylurea)), with the slow component being completely suppressed, the rapid ATP-induced phase is unaffected. It becomes eliminated, though, with an I50 of about 3 · 10?4 M. (3) No binary oscillations in dependence of the number of preilluminating flashes are observed for the rapid ATP-induced fluorescence increase. Under identical conditions such oscillations are found upon DCMU-addition. (4) The amplitude of the rapid ATP-induced fluorescence rise is unaffected by closure of Photosystem II reaction centers in presence of DCMU and NH2OH by a single saturating flash (removal of about 50% of total quenching). With further flashes and gradual complete removal of quenching, the rapid ATP-induced change is eliminated with a two-step dependency. It is concluded that the rapid phase of the ATP-induced increase in fluorescence reflects reverse electron flow at non-B-type reaction centers, while the slow phase is linked to reverse electron flow at B type centers. On the basis of these results a model is proposed for heterogeneous interactions between the ATPase and B-type and non-B-type electron-transport chains. ‘Direct coupling’ appears to be possible between CF0-CF1 and those electron-transport chains which are located in the stroma-exposed margin region of the grana stacks (PS IIβ units with non-B-type properties).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号