首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

2.
Monovalent ion stimulated adenosine triphosphatase from oat roots   总被引:19,自引:16,他引:3       下载免费PDF全文
Fisher J  Hodges TK 《Plant physiology》1969,44(3):385-393,395
Monovalent ion stimulated ATPase activity from oat (Avena sativa) roots has been found to be associated with various membrane fractions (cell wall, mitochondrial and microsomal) of oat roots. The ATPase requires Mg2+ (or Mn+2) but is further stimulated by K+ and other monovalent ions. The monovalent ions are ineffective in the absence of the divalent activating cation. The ATPase has been described with respect to monovalent ion specificity, temperature, pH, substrate specificity, and Mg2+ and K+ concentrations. It was further shown that oligomycin inhibits a part of the total ATPase activity and on the basis of the oligomycin sensitivity it appears that at least 2 membrane associated ATPases are being measured. The mitochondrial fraction is most sensitive to oligomycin and the microsomal fraction is least sensitive to oligomycin. The oligomycin insensitive ATPase appears to be stimulated more by K+ than the oligomycin sensitive ATPase.  相似文献   

3.
Seedlings exposed to salt stress are expected to show modulation of intracellular accumulation of sodium ions through a variety of mechanisms. Using a new methodology, this work demonstrates ouabain (OU)‐sensitive ATPase activity in the roots of sunflower seedlings subjected to salt stress (120 mM NaCl). 9‐Anthroylouabain (a derivative of ouabain known to inhibit Na+,K+‐ATPase activity in animal systems, EC 3.6.3.9) has been used as a probe to analyze OU‐sensitive ATPase activity in sunflower (Helianthus annuus) seedling roots by spectrofluorometric estimation and localization of its spatial distribution using confocal laser scanning microscopy. Salt stress for 48 h leads to a significant induction of OU‐sensitive ATPase activity in the meristematic region of the seedling roots. Calcium ions (10 mM) significantly inhibit enzyme activity and a parallel accumulation of sodium ions in the cytosol of the columella cells, epidermis and in the cells of the meristematic region of the roots is evident. As a rapid response to NaCl stress, the activity of OU‐sensitive ATPase gets localized in the nuclear membrane of root protoplasts and it gets inhibited after treatment with calcium ions. Nuclear membrane localization of the OU‐sensitive ATPase activity highlights a possible mechanism to efflux sodium ions from the nucleus. Thus, a correlation between OU‐sensitive ATPase activity, its modulation by calcium ions and accumulation of sodium ions in various regions of the seedling roots, has been demonstrated using a novel approach in a plant system.  相似文献   

4.
The sensitivity of catfish, Ictalurus punctatus, brain ATPase activities to cyclodiene compounds was investigated. The ATPase system showed differences in sensitivity to aldrin, dieldrin and photodieldrin. However, aldrin-transdiol (a more terminal metabolite of dieldrin and reported as a more potent neurotoxin than dieldrin) had no effect on any ATPase activity from fish brain homogenates. Mitochondrial Mg2+ ATPase was the most sensitive ATPase to the cyclodiene compounds tested. The possibility that the neurotoxic effects of these compounds is a secondary response resulting from mitochondrial Mg2+ ATPase inhibition is discussed.  相似文献   

5.
6.
A method is presented for the release of “native” thin filaments from 13-day old embryonic chick muscle without tryptic digestion or desoxycholate (DOC) solubilization of Z bands. The isolated filaments were 50–60 Å in diameter, of variable length, and formed “arrowhead-like” complexes with heavy meromyosin (HMM). In addition, the filaments interacted with purified myosin to form actomyosin as effectively as action extracted from an acetone powder of muscle. The Mg++-dependent ATPase activity and extent of superprecipitation of the synthetic actomyosin required a low concentration of Ca++, strongly suggesting the presence of troponin and tropomyosin on the thin filaments isolated from muscle at this stage of embryogenesis. The native thin filaments were more sensitive to trypsin than synthetic F-actin prepared from an acetone powder based on measurements of flow birefrengence, viscosity and the ability to activate myosin ATPase.  相似文献   

7.
Cytochemical techniques employing lead-precipitation of enzymically released inorganic phosphate have been widely used in attempts to localize the plasma membrane proton pump (H+-ATPase) in electron micrographs. Using Avena sativa root tissue we have performed a side-by-side comparison of ATPase activity observed in electron micrographs with that observed in in vitro assays using ATPases found in the soluble and plasma membrane fractions of homogenates. Cytochemical analysis of oat roots, which had been fixed in glutaraldehyde in order to preserve subcellular structures, identifies an ATPase located at or near the plasma membrane. However, the substrate specificity and inhibitor sensitivity of the in situ localized ATPase appear identical to those of an in vitro ATPase activity found in the soluble fraction, and are completely unlike those of the plasma membrane proton pump. Further studies demonstrated that the plasma membrane H+-ATPase is particularly sensitive to inactivation by the fixatives glutaraldehyde and formaldehyde and by lead. In contrast, the predominant soluble ATPase activity in oat root homogenates is less sensitive to fixation and is completely insensitive to lead. Based on these results, we propose a set of criteria for evaluating whether a cytochemically localized ATPase activity is, in fact, due to the plasma membrane proton pump.  相似文献   

8.
A highly ion-sensitive ATP-phosphorylation system in lobster nerve   总被引:1,自引:0,他引:1  
The transfer of -phosphate from 32P labeled adenosine-triphosphate (ATP) at low concentrations (10?10 to 10?7M) into the peripheral nerve of the lobster was found to be highly sensitive to external ionic environments. The phosphorylation process is inhibited at conditions similar to extracellular environments (high Na+, Ca++ and pH) and stimulated by those close to intracellular medium (high K+, Mg++ and low pH). This system is not related to NaK ATPase (pump ATPase) which is highly sensitive to ouabain and is active only at higher ATP concentrations (>10?6M). The system is membrane bound and sensitive to a variety of neuro-active agents which are known to interfere with ionic conductance changes in axons.  相似文献   

9.
Variable ATPase composition of human tumor plasma membranes   总被引:2,自引:0,他引:2  
Purified plasma membranes from several transplantable human tumors exhibit very high Mg2+-dependent ATPase activities. Three types of Mg2+-dependent ATPases can be demonstrated: (1) an ouabain sensitive Na+, K+-ATPase, which is a minor component of the tumor plasma membrane ATPase, (2) a Mg2+-activated ATPase, which is a non-specific nucleoside triphosphatase, and (3) an ATPase activity stimulated by Na+ (or K+) alone. In three human melanomas, only the first two activities are found. In an astrocytoma and an oat cell carcinoma, all three activities are found. In the same two tumors, the plasma membrane Mg2+-ATPase is also stimulated by Con A. The relationship of these ATPases are discussed.  相似文献   

10.
Sensitivity of CaMg ATPase from axonic plasma membrane (APM) and sarcoplasmic reticulum (SR) of lobster, Homarus, americanus, to DDT was studied. The CaMg ATPase found in SR with the high Ca2+ affinity is sensitive to DDT while the portion of ATPase related to the low Ca2+ affinity site is not inhibited by DDT. Also, DDT is more inhibitory against the CaMg ATPase prepared from APM than the one obtained from SR. The relationship between inhibition of the CaMg ATPase by DDT in the axonic nerve membrane and in, vivo poisoning symptoms of the nervous system is discussed.  相似文献   

11.
Mutual Exclusion of ATP,ADP and g-Strophanthin Binding to NaK-ATPase   总被引:6,自引:0,他引:6  
THE (Na++K+)-activated ATPase found in cell membrane fragments is for many reasons thought to be part of the active sodium pump system of cells. One of the arguments is that cardiac glycosides specifically inhibit the ATPase as well as the sodium pump1–3. It has been proposed that the inhibition is due to an interaction between the glycosides and some phosphorylated form of the ATPase system4–6.  相似文献   

12.
Two distinct membrane fractions containing H+-ATPase activity were prepared from red beet. One fraction contained a H+-ATPase activity that was inhibited by NO3 while the other contained a H+-ATPase inhibited by vanadate. We have previously proposed that these H+-ATPases are associated with tonoplast (NO3-sensitive) and plasma membrane (vanadate-sensitive), respectively. Both ATPase were examined to determine to what extent their activity was influenced by variations in the concentration of ATPase substrates and products. The substrate for both ATPase was MgATP2−, and Mg2+ concentrations in excess of ATP had only a slight inhibitory effect on either ATPase. Both ATPases were inhibited by free ATP (i.e. ATP concentrations in excess of Mg2+) and ADP but not by AMP. The plasma membrane ATPase was more sensitive than the tonoplast ATPase to free ATP and the tonoplast ATPase was more sensitive than the plasma membrane ATPase to ADP.

Inhibition of both ATPases by free ATP was complex. Inhibition of the plasma membrane ATPase by ADP was competitive whereas the tonoplast ATPase demonstrated a sigmoidal dependence on MgATP2− in the presence of ADP. Inorganic phosphate moderately inhibited both ATPases in a noncompetitive manner.

Calcium inhibited the plasma membrane but not the tonoplast ATPase, apparently by a direct interaction with the ATPase rather than by disrupting the MgATP2− complex.

The sensitivity of both ATPases to ADP suggests that under conditions of restricted energy supply H+-ATPase activity may be reduced by increases in ADP levels rather than by decreases in ATP levels per se. The sensitivity of both ATPases to ADP and free ATP suggests that modulation of cytoplasmic Mg2+ could modulate ATPase activity at both the tonoplast and plasma membrane.

  相似文献   

13.
A Cl-stimulated ATPase activity, which is sensitive to both thiocyanate and vanadate, has been localized to the plasma membrane of Aplysia enterocytes. Utilizing plasma membrane vesicles from Aplysia enterocytes, ATP stimulated Cl uptake to approximately 2.5-times that of control in a Na+, K+ and HCO3-free medium. This ATP-dependent Cl uptake was sensitive to both thiocyanate and vanadate. These results are consistent with the hypothesis that the active Cl absorptive process in Aplysia intestine could be a Cl-stimulated ATPase found in the enterocyte plasma membrane.  相似文献   

14.
During centrifugation of Dictyostelium membranes on sucrose and metrizamide gradients, an ATPase activity resistant to azide and molybdate but sensitive to diethylstilbestrol was found to copurify with the plasma membrane markers alkaline phosphatase and 125I in cells surface-labelled by lactoperoxidase catalyzed iodination. This ATPase was enriched 50-fold in purified plasma membranes and could be separated from the mitochondrial ATPase on metrizamide gradients. The plasma membrane ATPase is very specific for ATP as substrate and Mg2+ as essential cofactor. Its pH optimum is 6.5 and it is inhibited by dicyclohexylcarbodiimide, diethylstilbestrol, vanadate, mercurials and Cu2+, but not by ouabain, molybdate, azide or oligomycin. It was not specifically affected by either monovalent cations or anions. These results suggest that the plasma membranes of Dictyostelium contain an ATPase similar to the proton-pumping ATPases recently identified in fungal and plant plasma membranes (Serrano, R. (1984) Curr. Top. Cell. Regul. 23, 87–126).  相似文献   

15.
Characterization and functional reconstitution of the multidrug transporter   总被引:2,自引:0,他引:2  
P-Glycoprotein, the multidrug transporter, is isolated from the plasma membrane of CHRC5 cells using a selective two-step detergent extraction procedure. The partially purified protein displays a high level of ATPase activity, which has a highK M for ATP, is stimulated by drugs, and can be distinguished from that of other membrane ATPases by its unique inhibition profile. Delipidation completely inactivates ATPase activity, which is restored by the addition of fluid lipid mixtures. P-Glycoprotein was reconstituted into lipid bilayers with retention of both drug transport and ATPase activity. Proteoliposomes containing P-glycoprotein display osmotically sensitive ATP-dependent accumulation of3H-colchicine in the vesicle lumen. Drug transport is active, generating a stable 5.6-fold concentration gradient, and can be blocked by compounds in the multidrug resistance spectrum. Reconstituted P-glycoprotein also exhibits a high level of ATPase activity which is further stimulated by various drugs. P-Glycoprotein therefore functions as an active drug transporter with constitutive ATPase activity.  相似文献   

16.
Effect of various inhibitors on the P-type Na+-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum, was examined. The ATPase was extremely sensitive to p-chloromercuriphenylsulfonic acid, a modifier of SH-group. The enzyme was also sensitive to diethylpyrocarbonate, and analysis of the inhibition kinetics by the drug indicated that modification of a single histidine residue per ATPase molecule was sufficient to inactivate the enzyme. Received: 7 March 2001 / Accepted: 12 April 2001  相似文献   

17.
A continuous fluorimetric method using auxiliary-coupling enzymes such as pyruvate kinase and lactate dehydrogenase for measuring ADP production to assay ATPase activity is described. This method is simpler, more rapid, and more sensitive than the previously used spectrophotometric method. The application of this method for studying the ATPase of rabbit psoas muscle fibers during Mg2+-ATP activation is also illustrated and discussed.  相似文献   

18.
The ATPase activity of the chloroplast coupling factor 1 (CF1) isolated from the green alga Dunaliella is completely latent. A brief heat treatment irreversibly induces a Ca2+ -dependent activity. The Ca2+ dependent ATPase activity can be reversibly inhibited by ethanol, which changes the divalent cation dependency from Ca2+ to Mg2+. Both the Ca2+ -dependent and Mg2+ -dependent ATPase activities of heat-treated Dunaliella CF1 are inhibited by monospecific antisera directed against Chlamydomonas reinhardi CF1. However, when assayed under identical conditions, the Ca2+ -dependent ATPase activity is significantly more sensitive to inhibition by the antisera than is the Mg2+ -dependent activity. These data are interpreted as indicating that soluble Dunaliella CF1 can exist in a variety of conformations, at least one of which catalyzes a Ca2+ -dependent ATPase and two or more of which catalyze an Mg2+ -dependent ATPase.  相似文献   

19.
Lung surfactant is synthesized in lung epithelial type II cells and stored in the lamellar bodies prior to its secretion onto the alveolar surface. The lamellar bodies, like other secretory organelles, maintain an ATP-dependent pH gradient that is sensitive to inhibitors of H+-ATPase. This report shows that the ATPase activity of lamellar bodies is enriched in a fraction prepared from lamellar bodies that were disrupted after isolation. The apparent Vmax for this enzyme was 150 nmol ATP hydrolyzed per min per mg protein and apparent Km for ATP was approximately 50 μM. The enzyme activity was sensitive to N-ethylmaleimide (NEM), dicyclohexylcarbodiimide (DCCD) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1) (all inhibitors of vacuolar-type H+-ATPase) and vanadate (inhibitor of phosphoenzyme-type ATPase). Besides, the activity could also be inhibited with diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and Ca2+. Two proteins (of approximately 45 kDa and 17 kDa) of this fraction showed acid-stable phosphorylation with ATP. The labeling of proteins with ATP (-γ-32P) could be chased with unlabelled ATP, suggesting that phosphorylation and dephosphorylation of these proteins is associated with the ATPase activity. Our results on inhibition characteristics of the enzyme activity suggest that besides a vacuolar type H+-ATPase, the lamellar bodies also contain a phosphoenzyme type ATPase that is sensitive to inhibitors of vacuolar type H+-ATPase.  相似文献   

20.
The PIF1 helicase family performs many cellular functions. To better understand the functions of the human PIF1 helicase, we characterized the biochemical properties of its ATPase. PIF1 is very sensitive to temperature, whereas it is not affected by pH, and the ATPase activity of human PIF1 is dependent on the divalent cations Mg2+ and Mn2+ but not Ca2+ and Zn2+. Inhibition was observed when single-stranded DNA was coated with RPA or SSB. Moreover, the ATPase activity of PIF1 proportionally decreased with decreasing oligonucleotide length due to a decreased binding ability. A minimum of 10 oligonucleotide bases are required for PIF1 binding and the hydrolysis of ATP. The analysis of the biochemical properties of PIF1 together with numerous genetic observations should aid in the understanding of its cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号