首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg/ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t 1/2) for at least one-third of the cell cholesterol of 3.2 +/- 0.6 and 14.3 +/- 1.5 h, respectively. Plasma membrane vesicles (0.5-5.0 micron diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t 1/2 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 +/- 0.5 and 11.2 +/- 0.7 h, respectively. These t 1/2 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rates indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 +/- 0.1 and 2.9 +/- 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t 1/2 values for cholesterol efflux from these cell lines.  相似文献   

2.
Unidirectional fluxes of [14C]lactose by whole cells of Escherichia coli under highly energized and partially de-energized (in the presence of CN?) conditions are analyzed kinetically.When the cells are energized, the value for V influx is 0.45 ± 0.01 mM internal concentration increment/s and Kt is 0.26 ± 0.03 mM. At an external concentration of 0.61 mM the steady-state internal concentration is 0.25 M, reached after about 1h. The maximum steady-state concentration ratio is 2 · 103.The efflux process under these conditions is non-saturable, being linearly dependent upon internal concentration over the range 25–250 mM with a first-order rate constant of 8.8 ± 0.2 · 10?4 s?1.The transport in the presence of CN? is active, with a maximum concentration ratio (internal concentration/external concentration) of 104, and the uptake is mimicked by anoxia (< 70 ppm O2).The effects of CN? are to lower the V for influx and to change the efflux from a non-saturable to a saturable process with a value for Kt (60 mM) intermediate between that for energized efflux (> 250 mM) and influxe (0.3–0.6 mM), the latter value not changing appreciably. Partial de-energization thus affects both the influx and efflux processes.  相似文献   

3.
Metabolic acidosis produces a phosphaturia which is independent of parathyroid hormone or dietary phosphorus intake. To study the underlying mechanism, inorganic phosphate (Pi) and glucose transport were studied in brush-border membrane vesicles prepared from the renal cortex of parathyroidectomized rats gavaged for three days with either 7.5 ml of 1.6% NaCl (control) or 1.5% NH4Cl (acidosis). At killing, blood pH and plasma bicarbonate were 7.36 ± 0.01 and 21.8 ± 0.8 mequiv./l, respectively, in control and 7.12 ± 0.03 (P < 0.01) and 11.1 ± 1.2 (P < 0.01) in acidotic rats. Serum Pi was similar in both groups, while 24 h urine Pi excretion was higher in the acidotic group (P < 0.01). Peak sodium-dependent uptake of Pi, measured after 1.5 min of incubation, was higher in controls than acidotic rats (4442 ± 464 vs. 2412 ± 259 pmol/mg protein, P < 0.01), whereas peak glucose uptake at 1.5 min was not significantly different between the groups. Equilibrium values for Pi and glucose uptake were similar in the two groups. Km for Pi uptake in the control and acidotic animals were not different, 0.036 and 0.040 mM, respectively. By contrast, Vmax was higher in controls than in the acidotic group, 3.13 vs. 1.15 nmol/mg protein per 15 s. These results suggest that metabolic acidosis directly inhibits Pi uptake by the brush border of the proximal tubule by decreasing the availability of Pi carriers of the renal brush-border membrane.  相似文献   

4.
(1) The Michaelis-Menten parameters for hexose transfer in erythroctes, erythrocyte ghosts and inside-out vesicles at 20°C were determined using the light scattering method of Sen and Widdas ((1962) J. Physiol. 160, 392–403). (2) The external Km for infinite-cis exit of d-glucose in cells and ghosts is 3.6 ± 0.5 mM. (3) Dilution of cellular solute (up to × 90 dilution) by lysing and resealing cells in varying volumes of lysate is without effect on the Vm for net d-glucose exit. The Km for net exit, however, falls from 32.4 ± 3.7 mM in intact cells to 12.9 ± 2.3 mM in ghosts. This effect is reversible. (4) Infinite-cis net d-glucose uptake measurements in cells and ghosts reveal the presence of a low Km, high affinity internal site of 5.9 ± 0.8 mM. The Vm for net glucose entry increases from 23.2 ± 3.7 mmol/l per min in intact cells to 55.4 ± 6.3 mmol/l per min in ghosts. (5) The external Km for infinite-cisd-glucose exit in inside-out vesicles is 6.8 ± 2.7 mM. The kinetics of zero-transd-glucose exit from inside-out vesicles are changed markedly when cellular solute (obtained by lysis of intact cells) is applied to either surface of inside-out vesicles. When solute is present externally, the Km and Vmax for zero-trans exit are decreased by up to 10-fold. When solute is present at the interior of inside-out vesicles, Vmax for zero-trans exit is reduced; Km for exit is unaffected. In the nominal absence of cell solute, transfer is symmetric in inside-out vesicles. The orientation of transporter in the bilayer is unaffected by the vesiculation procedure. (6) External application of cellular solute to ghosts reduces Vmax for d-glucose exit but is without effect on the external Km for infinite-cis exit. (7) The inhibitory potency of cell lysate on hexose transfer is lost following dialysis indicating that the factors responsible for transfer modulation are low molecular weight species. (8) We consider the hexose transfer in human erythrocytes is intrinsically symmetric and that asymmetry of transfer is conferred by interaction of the system with low molecular weight cytosolic factors.  相似文献   

5.
The effects of inorganic cations, n-hexanol, saccharose and 2H2O on the electrophoretic mobility and ζ-potential of membrane vesicles from nerve myelin were measured and the results compared with the corresponding effects of the same reagents on the transition voltage, VTr, of the nerve axon membrane. Different cation concentrations and 2H2O affect both potentials, the ζ-potential and VTr, in a parallel way. Saccharose and n-hexanol, however, shift VTr but leave the electrophoretic mobility of the myelin vesicles unchanged. These results suggest that VTr shifts are not necessarily linked to changes in the membrane surface charge density but may also be caused by an interaction between the reagent and non-polar groups of the membrane interior.  相似文献   

6.
The proton efflux from intact, anaerobic Escherichiacoli cells following a small oxygen pulse is both slow (t1M2~-10s) and inefficient (H+O~-0.5. Very low levels (<80 nM) of the proton ionophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which have no detectable effect upon active transport, cause a 3–5 fold stimulation in the extent of proton efflux without affecting the efflux rate. At slightly higher concentrations of FCCP (80 nM to 0.5 μM), a sharp inhibition of this increased proton efflux occurs, with the H+O ratio obtained in the presence of 0.5 μM FCCP approximately equal to that obtained in the absence of FCCP. Still higher concentrations of FCCP (> 1 μM), which inhibit active transport, cause a further gradual decrease in the H+O ratio. The unusual increase in the apparent efficiency of H+ efflux by <80 nM FCCP is not accompanied by an increase in the rate of membrane deenergization following an O2 pulse, although such an increase is seen with the higher (uncoupling) FCCP concentrations.  相似文献   

7.
The cytochrome b5b5 reductase system solubilized from microsomes exhibits monophasic reduction kinetics over the temperature range 15 ° to ?25 °C in aqueous/ethylene glycol co-solvent, whereas in intact microsomes, the process becomes increasingly heterogeneous below 0 °C, reflecting heterogeneities in membrane structure observable as distributions in reaction rates and activation energies.  相似文献   

8.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

9.
The kinetics of fructose uptake was determined in perfused rat liver during steady-state fructose elimination. On the basis of the corresponding values of fructose concentration in the affluent and in the effluent medium, and the fructose and ATP concentration in biopsies, the kinetics of membrane transport and intracellular phosphorylation in the intact organ was calculated according to a model system. Carrier-mediated fructose transport has a high Km (67 mM) and V (30 μmoles · min?1 ·g?1). The calculated kinetic constants of the intracellular phosphorylation were compared with values obtained with an acid-treated rat liver high speed supernatant (values given in parentheses). Km with fructose 1.0 mM (0.7 mM), Km with ATP 0.54 mM (0.37 mM), V 10.3 μmoles · min?1 · g?1 (10.1 μmoles · min?1 · g?1, calculated on the basis of the highest measured rate of fructose uptake correcting the ATP concentration to saturating values). The kinetics of fructose uptake reveals that at Physiological fructose concentrations the membrane transport limits the rate of fructose uptake, thus protecting the liver from severe depletion of adenine nucleotides.  相似文献   

10.
The effects of the prostaglandins PGE1 and PGE2 on the deformability of the human erythrocyte were studied using spin-labeled erythrocytes. Two magnetic resonance parameters were measured: (1) The orientation relaxation time, t12, for the erythrocyte, and (2) the order parameter, S, for a fatty acid spin label bound to the membrane. Prostaglandins PGE1 and PGE2 exhibited opposite effects on both t12 and S. PGE2 made the cell less deformable (increases of t12 and S) and PGE1 made the erythrocyte more deformable (decrease of t12 and S).  相似文献   

11.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

12.
13.
Exposure of intact brush border membrane vesicles of hog kidney cortex to cholesterol oxidase resulted in 24% oxidation of membrane cholesterol compared with more than 95% oxidation of cholesterol in lipids isolated from membranes, showing that cholesterol is asymmetrically distributed in membranes. Phospholipase C, hydrolyzed 76% of phosphatidylcholine and 10–12% phosphatidylethanolamine while phosphatidylserine was not hydrolyzed, thus indicating that majority of phosphatidylcholine is present on the outer surface of these vesicles while phosphatidylethanolamine and phosphatidylserine are present on the inner surface. Methylation of phospholipids in brush border membrane with S-adenosyl-[methyl-3H]methionine resulted in the formation of phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine and phosphatidylcholine from endogenous phosphatidylethanolamine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 to 10. Addition of exogenous mono- and dimethylphosphatidylethanolamine derivatives enhanced methyl group incorporation by 4–5-fold as compared to the addition of phosphatidylethanolamine. The conversion of endogenous phosphatidylethanolamine to phosphatidyl-N-monomethylethanolamine or addition of exogenous phosphatidylmonomethylethanolamine to brush border membrane did not result in a change in bulk membrane fluidity as determined by fluorescence polarization of diphenylhexatriene. Methylation of phosphatidylethanolamine in brush border membrane did not affect the Na+-dependent uptake of either d-glucose or phosphate, although the accessibility of cholesterol in membrane to cholesterol oxidase was diminished by 21%, presumably due to altered flip-flop movement of cholesterol in the membrane.  相似文献   

14.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

15.
In order to test the question if a pool of lipophilic ions may exist in black lipid membranes which cannot be detected by electrical relaxation measurements we have performed simultaneously measurements of the optical absorption of a lipophilic ion. The absorbance of membrane-bound dipicrylamine at 410 nm was measured with a sensitive spectrophotometer which can detect absorbance changes ? 4 · 10?5. A minimal concentration of about 6 · 1011 dipicrylamine ions per cm2 of the membrane could be detected with this instrument. The dipicrylamine concentration in the membrane obtained with the optical method Ntopt is compared with the concentrations Ntel obtained from simultaneous electrical relaxation measurements. Ntopt and Ntel agreed at low dipicrylamine concentrations (10?8–10?7 M in the aqueous phase) and showed saturation at higher concentrations (up to 5 · 10?6 M). In the saturation range Ntopt was maximally four times higher than Ntel. The significance of this difference is discussed together with general aspects of the saturation phenomenon.  相似文献   

16.
A method for calculating the rate constant (KA1A2) for the oxidation of the primary electron acceptor (A1) by the secondary one (A2) in the photosynthetic electron transport chain of purple bacteria is proposed.The method is based on the analysis of the dark recovery kinetics of reaction centre bacteriochlorophyll (P) following its oxidation by a short single laser pulse at a high oxidation-reduction potential of the medium. It is shown that in Ectothiorhodospira shaposhnikovii there is little difference in the value of KA1A2 obtained by this method from that measured by the method of Parson ((1969) Biochim. Biophys. Acta 189, 384–396), namely: (4.5±1.4) · 103s?1 and (6.9±1.2) · 103 s?1, respectively.The proposed method has also been used for the estimation of the KA1A2 value in chromatophores of Rhodospirillum rubrum deprived of constitutive electron donors which are capable of reducing P+ at a rate exceeding this for the transfer of electron from A1 to A2. The method of Parson cannot be used in this case. The value of KA1A2 has been found to be (2.7±0.8) · 103 s?1.The activation energies for the A1 to A2 electron transfer have also been determined. They are 12.4 kcal/mol and 9.9 kcal/mol for E. shaposhnikovii and R. rubrum, respectively.  相似文献   

17.
18.
The phase transition temperature (Tt) of dipalmitoyl phosphatidic acid multilamellar liposomes is depressed 10°C by the inhalation anesthetic methoxyflurane at a concentration of 100 mmol/mol lipid. Application of 100 atm of helium pressure to pure phosphatidic acid liposomes increased Tt only 1.5°C. However, application of 100 atm helium pressure to dipalmitoyl phosphatidic acid lipsomes containing 100 mmol methoxyflurane/mol lipid almost completely antagonized the effect of the anesthetic. A nonlinear pressure effect is observed. In a previous study, a concentration of 60 mmol methoxyflurane/mol dipalmitoyl phosphatidylcholine depressed Tt only 1.5°C, exhibiting a linear pressure effect. The completely different behavior in the charged membrane is best explained by extrusion of the anesthetic from the lipid phase.  相似文献   

19.
Differential polarized phase fluorometry was used to quantify the rotational rate (R) and limiting anisotropy (r) of the membrane probe diphenylhexatriene (DPH) in solvents and lipid vesicles exposed to hydrostatic pressures ranging from 1 bar to 2 kbar. These measurements reveal the effect of pressure on the phase-transition temperatures of the phosphatidylcholine vesicles, and the effects of pressure on order parameter of the acyl side-chain region of the membranes, the latter as indicated by r. In addition to the well-known elevation of the transition temperature (Tc) with pressure, our results demonstrate that increased pressure restores the order of the bilayers to that representative of temperatures below the transition temperature. We also found that solvents which allowed free isotropic rotation of DPH at 1 bar no longer allowed free rotation when sufficiently compressed; moreover, the apparent DPH rotational rate increased with r. Pressure studies using both DPH and the charged DPH analogue, trimethylammonium DPH (TMA-DPH) indicated that the Tc of dipalmitoylphosphatidylcholine vesicles increased 23 K/kbar and an apparent volume change of 0.036 ml/mol lipid at the phase transition. Assuming, as has been proposed, that TMA-DPH is localized near the glycerol backbone region of the bilayers, these results indicate a similar temperature- and pressure-dependent phase transition in this region and the acyl side-chain region of the membrane.  相似文献   

20.
(1) The polymorphic phase behaviour of aqueous dispersions of various synthetic phosphatidylethanolamines, both singly and in mixtures, has been investigated by 31P-NMR. (2) 14:014:0 PE remains in the lamellar phase up to 90°C. 18:1t18:1t PE exhibits a lamellar to hexagonal (HII) transition between 60°C and 63°C. For 18:1c18:1c PE, the lamellar to hexagonal (HII) transition occurs between 7 and 12°C, whereas for 18:2c18:2c PE, the hexagonal (HII) phase is the preferred structure above ?15°C. (3) Mixtures of 18:1c18:1c PE and 18:1t18:1t PE exhibit near-ideal miscibility behaviour. For mixtures of 18:1c18:1c PE and 14:014:0 PE there is evidence of fluid-solid immiscibility at temperatures below the gel-liquid crystalline transition temperature of the 14:014:0 PE component. Mixtures of 18:2c18:2c PE and 18:1t18:1t PE exhibit complex phase behaviour involving limited fluid-solid immiscibility at low temperatures and formation of a phase allowing isotropic motional averaging at higher temperatures. (4) 31P-NMR provides a graphic method for investigating the miscibility properties of mixed PE systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号