首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact human erythrocytes were irradiated in the frozen state with a high-energy electron beam. Nitrobenzylthioinosine-sensitive uridine influx, equilibrium exchange uridine influx and high-affinity nitrobenzylthioinosine binding were inactivated as a simple exponential function of the radiation dose, indicating an in situ target size of 122 000. The results suggest that the nitrobenzylthioinosine-binding site(s) and the permeation site(s) of the transporter are present on the same transporter element.  相似文献   

2.
The initial rate of [14C]uridine transport by guinea pig erythrocytes was investigated at different temperatures. At 37, 22, and 10 degrees C the concentration dependence of uridine zero-trans influx and equilibrium exchange influx was resolved into two components; (a) a saturable component which followed simple Michaelis-Menten kinetics and which was inhibited by nitrobenzylthioinosine, and (b) a linear component of low magnitude and insensitive to nitrobenzylthioinosine inhibition. The maximum velocity, Vmax, of zero-trans uridine influx for the saturable transport system was 70-fold higher at 37 than 10 degrees C (1.24, 0.20, and 0.018 mmol/L of cells per hour at 37, 22, and 10 degrees C, respectively). Similarly, the apparent affinity, Km, for zero-trans influx decreased as the temperature was lowered (0.27, 0.066, and 0.038 mM at 37, 22, and 10 degrees C, respectively). In contrast, uridine equilibrium exchange influx was less temperature dependent (Vmax, 2.80, 0.89, and 0.14 mmol/L of cells per hour; apparent Km 0.61, 0.36, and 0.24 mM at 37, 22, and 10 degrees C, respectively). These results demonstrate that the mobility of the empty carrier is impaired to a greater extent than the mobility of the loaded carrier temperature decreased. However, the kinetic constants for zero-trans uridine influx and efflux at 37 degrees C were similar, indicating that the nucleoside transporter exhibited directional symmetry at 37 degrees C. Arrhenius plots of the maximum velocity for equilibrium exchange and zero-trans uridine influx were discontinuous above 25 degrees C, but between 20 and 5 degrees C the plots were linear (Ea = 22 and 30 kcal/mol for equilibrium exchange and zero-trans influx, respectively.  相似文献   

3.
The zero-trans influx of 500 microM uridine by CHO, P388, L1210 and L929 cells was inhibited by nitrobenzylthioinosine ( NBTI ) in a biphasic manner; 60-70% of total uridine influx by CHO cells and about 90% of that in P388, L1210 and L929 cells was inhibited by nmolar concentrations of NBTI (ID50 = 3-10 nM) and is designated NBTI -sensitive transport. The residual transport activity, designated NBTI -resistant transport, was inhibited by NBTI only at concentrations above 1 microM (ID50 = 10-50 microM). S49 cells exhibited only NBTI -sensitive uridine transport, whereas Novikoff cells exhibited only NBTI -resistant uridine transport. In all instances NBTI -sensitive transport correlated with the presence of between 7 7 X 10(4) and 7 X 10(5) high-affinity NBTI binding sites/cell (Kd = 0.3-1 nM). Novikoff cells lacked such sites. The two types of nucleoside transport, NBTI -resistant and NBTI -sensitive, were indistinguishable in substrate affinity, temperature dependence, substrate specificity, inhibition by structurally unrelated substances, such as dipyridamole or papaverine, and inhibition by sulfhydryl reagents or hypoxanthine. We suggest, therefore, that a single nucleoside transporter can exist in an NBTI -sensitive and an NBTI -resistant form depending on its disposition in the plasma membrane. The sensitive form expresses a high-affinity NBTI binding site(s) which is probably made up of the substrate binding site plus a hydrophobic region which interacts with the lipophilic nitrobenzyl group of NBTI . The latter site seems to be unavailable in NBTI -resistant transporters. The proportion of NBTI -resistant and sensitive uridine transport was constant during proportion of NBTI -resistant and sensitive uridine transport was constant during progression of P388 cells through the cell cycle and independent of the growth stage of the cells in culture. There were additional differences in uridine transport between cell lines which, however, did not correlate with NBTI sensitivity and might be related to the species origin of the cells. Uridine transport in Novikoff cells was more sensitive to inhibition by dipyridamole and papaverine than that in all other cell lines tested, whereas uridine transport in CHO cells was the most sensitive to inactivation by sulfhydryl reagents.  相似文献   

4.
The zero-trans influx of 500 μM uridine by CHO, P388, L1210 and L929 cells was inhibited by nitrobenzylthioinosine (NBTI) in a biphasic manner; 60–70% of total uridine influx by CHO cells and about 90% of that in P388, L1210 and L929 cells was inhibited by nmolar concentrations of NBTI (ID50 = 3?10 nM) and is designated NBTI-sensitive transport. The residual transport activity, designated NBTI-resistant transport, was inhibited by NBTI only at concentrations above 1 μM (ID50 = 10?50 μM). S49 cells exhibited only NBTI-sensitive uridine transport, whereas Novikoff cells exhibited only NBTI-resistant uridine transport. In all instances NBTI-sensitive transport correlated with the presence of between 7·104 and 7·105 high-affinity NBTI binding sites/cell (Kd = 0.3?1 nM). Novikoff cells lacked such sites. The two types of nucleoside transport, NBTI-resistant and NBTI-sensitive, were indistinguishable in substrate affinity, temperature dependence, substrate specificity, inhibition by structurally unrelated substances, such as dipyridamole or papaverine, and inhibition by sulfhydryl reagents or hypoxanthine. We suggest, therefore, that a single nucleoside transporter can exist in an NBTI-sensitive and an NBTI-resistant form depending on its disposition in the plasma membrane. The sensitive form expresses a high-affinity NBTI binding site(s) which is probably made up of the substrate binding site plus a hydrophobic region which interacts with the lipophilic nitrobenzyl group of NBTI. The latter site seems to be unavailable in NBTI-resistant transporters. The proportion of NBTI-resistant and sensitive uridine transport was constant during proportion of NBTI-resistant and sensitive uridine transport was constant during progression of P388 cells through the cell cycle and independent of the growth stage of the cells in culture. There were additional differences in uridine transport between cell lines which, however, did not correlate with NBTI sensitivity and might be related to the species origin of the cells. Uridine transport in Novikoff cells was more sensitive to inhibition by dipyridamole and papaverine than that in all other cell lines tested, whereas uridine transport in CHO cells was the most sensitive to inactivation by sulfhydryl reagents.  相似文献   

5.
The transport of nucleosides by LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, was characterised. Uridine influx was saturable (apparent Km approximately 34 microM at 22 degrees C) and inhibited by greater than 95% by nitrobenzylthioinosine (NBMPR), dilazep and a variety of purine and pyrimidine nucleosides. In contrast to other cultured animal cells, the NBMPR-sensitive nucleoside transporter in LLC-PK1 cells exhibited both a high affinity for cytidine (apparent Ki approximately 65 microM for influx) and differential 'mobility' of the carrier (the kinetic parameters of equilibrium exchange of formycin B are greater than those for formycin B influx). An additional minor component of sodium-dependent uridine influx in LLC-PK1 cells became detectable when the NBMPR-sensitive nucleoside transporter was blocked by the presence of 10 microM NBMPR. This active transport system was inhibited by adenosine, inosine and guanosine but thymidine and cytidine were without effect, inhibition properties identical to the N1 sodium-dependent nucleoside carrier in bovine renal outer cortical brush-border membrane vesicles (Williams and Jarvis (1991) Biochem. J. 274, 27-33). Late proximal tubule brush-border membrane vesicles of porcine kidney were shown to have a much reduced Na(+)-dependent uridine uptake activity compared to early proximal tubule porcine brush-border membrane vesicles. These results, together with the recent suggestion of the late proximal tubular origin of LLC-PK1 cells, suggest that in vivo nucleoside transport across the late proximal tubule cell may proceed mainly via a facilitated-diffusion process.  相似文献   

6.
Rapid kinetic techniques were used to study the transport and salvage of uridine and other nucleosides in mouse spleen cells. Spleen cells express two nucleoside transport systems: (1) the non-concentrative, symmetrical, Na+-independent transporter with broad substrate specificity, which has been found in all mammalian cells and is sensitive to inhibition by dipyridamole and nitrobenzylthioinosine; and (2) a Na+-dependent nucleoside transport, which is specific for uridine and purine nucleosides and resistant to inhibition by dipyridamole and nitrobenzylthioinosine. The kinetic properties of the two transporters were determined by measuring uridine influx in ATP-depleted cells and dipyridamole-treated cells, respectively. The Michaelis-Menten constants for Na+-independent and -dependent transport were about 40 and 200 microM, respectively, but the first-order rate constants were about the same for both transport systems. Nitrobenzylthioinosine-sensitivity of the facilitated nucleoside transporter correlated with the presence of about 10,000 high-affinity (Kd = 0.6 nM) nitrobenzylthioinosine-binding sites per cell. The turnover number of the nitrobenzylthioinosine-sensitive nucleoside transporter was comparable to that of mouse P388 leukemia cells. The activation energy of this transporter was 20 kcal/mol. Entry of uridine via either of the transport routes was rapidly followed by its phosphorylation and conversion to UTP. The Michaelis-Menten constant for the in situ phosphorylation of uridine was about 50 microM and the first-order rate constants for phosphorylation and transport were about the same. The spleen cells also efficiently salvaged adenosine, adenine, and hypoxanthine, but not thymidine.  相似文献   

7.
Incubation of Novikoff rat hepatoma cells; mouse L929, P388 and L1210 cells; and Chinese hamster ovary cells with sulfhydryl reagents, such as p-hydroxymercuribenzoate or p-hydroxymercuribenzenesulfonate, reduced the zero-trans influx of uridine in a concentration-dependent manner. The sensitivity of uridine transport to inhibition varied somewhat for the cell lines, Chinese hamster ovary cells being the most sensitive. Maximum inhibition by p-hydroxymercuribenzoate occurred in 10–20 min of incubation at 37 °C, and was associated with a decrease in maximum transport velocity without significant change in substrate affinity of the carrier. The development of inhibition of uridine influx correlated with binding of [14C]p-hydroxymercuribenzoate to the cells. Inhibition of transport also roughly correlated with a decreased binding of 6-nitrobenzylthioinosine to high-affinity binding sites on the cells (presumably representing the nucleoside transporter) without affecting binding affinity. Treatment of cells with p-hydroxymercuribenzenesulfonate reduced uridine influx and efflux to a similar extent. Inhibition of uridine transport and binding of [14C]p-hydroxymercuribenzoate were readily reversed by incubation of the cells with dithiothreitol. The results indicate that sulfhydryl groups are essential for the functioning of the nucleoside transporter, perhaps for the binding of substrate. Blockage of the sulfhydryl groups results in a reversible inactivation of the carrier. Treatment of the cells with the sulfhydryl reagents also caused a concentration-dependent increase in cell volume, which was readily reversed by incubation of the cells with dithiothreitol but seemed unrelated to the inhibition of nucleoside transport.  相似文献   

8.
The effects of hydrostatic pressure (0.1-50 MPa) on uridine transport mediated by the 'simple' facilitated nucleoside transporter of guinea-pig and human erythrocytes have been studied in an attempt to identify the volume changes which occur during transport. Pressure inhibited the zero-trans (influx or efflux) mode of uridine transport in guinea-pig cells significantly more (about 2.2- x) than equilibrium exchange. The equilibrium binding of 3H-nitrobenzylthioinosine, a potent specific inhibitor of nucleoside transport, to human red cells and ghosts, was not significantly altered by pressure suggesting that the permeation site was unperturbed. Thus pressure inhibited the transporter primarily by preventing the volume increase associated with the translocation step. Furthermore, the return of the 'empty' transporter was found to be rate-limiting because it required a larger increase in volume than when the transporter was loaded with substrate.  相似文献   

9.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

10.
FUI1 and function unknown now 26 (FUN26) are proteins of uncertain function with sequence similarities to members of the uracil/allantoin permease and equilibrative nucleoside transporter families of transporter proteins, respectively. [(3)H]Uridine influx was eliminated by disruption of the gene encoding FUI1 (fui1) and restored by expression of FUI1 cDNA, whereas influx in transport-competent and fui1-negative yeast were unaffected, respectively, by disruption of the FUN26 gene or overexpression of FUN26 cDNA. FUI1 transported uridine with high affinity (K(m), 22 +/- 3 micrometer) and was unaffected or inhibited only partially by high concentrations (1 mm) of a variety of ribo- and deoxyribonucleosides or nucleobases. When FUN26 cDNA was expressed in oocytes of Xenopus laevis, inward fluxes of [(3)H]uridine, [(3)H]adenosine, and [(3)H]cytidine were stimulated, and uridine influx was independent of pH and not inhibited by dilazep, dipyridamole, or nitrobenzylmercaptopurine ribonucleoside. Fractionation of yeast membranes containing immunotagged recombinant FUN26 (shown to be functional in oocytes) demonstrated that the protein was primarily in intracellular membranes. These results indicated that FUI1 has high selectivity for uracil-containing ribonucleosides and imports uridine across cell-surface membranes, whereas FUN26 has broad nucleoside selectivity and most likely functions to transport nucleosides across intracellular membranes.  相似文献   

11.
The transmembrane equilibration of radiolabeled uridine was measured by rapid kinetic techniques in human erythrocytes from freshly drawn blood and in the same cells during conventional storage of the blood as well as in cells from outdated blood. Our results confirm earlier reports that the maximum velocity of uridine equilibrium exchange (Vee) at 25 degrees C is about 30% lower in outdated than fresh red cells, whereas the opposite is the case for the Michaelis-Menten constant for equilibrium exchange (Kee), and that maximum zero-trans efflux (Vzt21) is about 4-times greater than maximum zero-trans influx (Vzt12) in outdated cells (directional asymmetry), whereas they are about the same in fresh red cells. At 25 degrees C, the nucleoside-loaded carrier of fresh cells moves on the average 6-times more rapidly than the empty carrier, whereas the differential mobility of loaded and empty carrier from outdated cells is about 15-fold. Our results also show that greater efflux than influx in outdated cells is not due to a general leakiness of outdated cells, that the differences in kinetic properties of the transporter developed during the first two weeks of blood storage and that the differences are greatly amplified when transport is measured at 5 degrees C rather than 25 degrees C. At 5 degrees C, the loaded carrier from outdated red cells moves about 325-times more rapidly than the empty carrier and maximum zero-trans efflux exceeds maximum zero-trans influx about 14-times, whereas the transport of fresh cells exhibits directional symmetry just as at 25 degrees C. The changes in kinetic properties of transport induced by temperature and storage are probably related to structural alterations in the plasma membrane and suggest that the operation of carrier is subject to modification by the membrane environment. Other results show that the kinetics of the sugar transport of human red cells is not affected in the same manner by blood storage as those of the nucleoside transporter.  相似文献   

12.
The transport of [U-14C]uridine was investigated in rat cerebral-cortical synaptosomes using an inhibitor-stop filtration method. Under these conditions the rapid efflux of uridine from the synaptosomes is prevented and uridine is not significantly metabolized in the synaptosome during the first 1 min of uptake. The dose-response curve for the inhibition of uridine transport by nitrobenzylthioinosine (NBMPR) was biphasic: approx. 40% of the transport activity was inhibited with an IC50 (concentration causing half-maximal inhibition) value of 0.5 nM, but the remaining activity was insensitive to concentrations as high as 1 microM. Similar biphasic dose-response curves were observed for dilazep inhibition, but both transport components were equally sensitive to dipyridamole inhibition. Uridine influx by both components was saturable (Km 300 +/- 51 and 214 +/- 23 microM, and Vmax. 12 +/- 3 and 16 +/- 3 pmol/s per mg of protein, for NBMPR-sensitive and NBMPR-insensitive components respectively), and inhibited by other nucleosides such as 2-chloroadenosine, adenosine, inosine, thymidine and guanosine with similar IC50 values for the two components. Inhibition of uridine transport by NBMPR was associated with high-affinity binding of NBMPR to the synaptosome membrane (Kd 58 +/- 15 pM). Binding of NBMPR to these sites was competitively blocked by uridine and adenosine and inhibited by dilazep and dipyridamole, with Ki values similar to those measured for inhibiting NBMPR-sensitive uridine influx. These results demonstrate that there are two components of nucleoside transport in our rat synaptosomal preparation that differ in their sensitivity to inhibition by NBMPR. Thus conclusions regarding nucleoside transport in rat brain based only on NBMPR-binding activity must be viewed with caution.  相似文献   

13.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

14.
When reconstituted into proteoliposomes, the human erythrocyte nucleoside transporter catalysed nitrobenzylthioguanosine (NBTGR)-sensitive zero-trans influx of three different nucleosides at broadly similar rates (inosine, uridine greater than adenosine). However, proteoliposomes also exhibited high rates of NBTGR-insensitive uptake of adenosine, making this nucleoside unsuitable for reconstitution studies. Equivalent high rates of adenosine influx were observed in protein-free liposomes, establishing that this permeability pathway represents simple diffusion of nucleoside across the lipid bilayer. In contrast to adenosine, inosine and uridine exhibited acceptable rates of NBTGR-insensitive uptake. Of the two, inosine is the more attractive permeant for reconstitution experiments, having a 2.5-fold lower basal membrane permeability. Studies of nucleoside transport specificity in reconstituted membrane vesicles should take account of the widely different passive permeabilities of different nucleosides.  相似文献   

15.
The characteristics of uridine transport were studied in rabbit intestinal brush-border membrane vesicles. Uridine was taken up into an osmotically active space in the absence of metabolism and there was no binding of uridine to the membrane vesicles. Uridine uptake was markedly enhanced by sodium, but showed no significant stimulation by other monovalent cations tested. Kinetic analysis of the sodium-dependent component of uridine flux indicated a single system obeying Michaelis-Menten kinetics (Km value of 6.4 +/- 1.4 microM with a Vmax of 9.1 +/- 3.6 pmol/mg protein per s as measured under zero-trans conditions with a 100 mM NaCl gradient at 24 degrees C). A variety of purine and pyrimidine nucleosides were able to inhibit sodium-dependent uridine transport, suggesting that these nucleosides are also permeants for the same system. Consistent with this suggestion was the finding that these nucleosides also stimulated uridine efflux from the brush-border membrane vesicles. The sodium: uridine coupling stoichiometry was found to be 1:1 as measured by the activation method. From these results it is concluded that a broad specificity sodium-dependent nucleoside transporter is present at the brush-border membrane surface of rabbit enterocytes.  相似文献   

16.
Nitrobenzyl[35S]thioinosine binding and nitro[3H]benzylthioinosine binding to nucleoside-permeable and nucleoside-impermeable sheep erythrocyte membranes was investigated, and compared with that found for human erythrocytes. High-affinity nitrobenzylthioinosine-binding sites (apparent KD congruent to 1 nM) were present on human and nucleoside-permeable but not nucleoside-impermeable sheep erythrocyte membranes (8400 and 18 sites/cell for human and sheep nucleoside-permeable sheep erythrocytes was displaced by nitrobenzylthioguanosine and dipyridamole. Uridine, inosine and adenosine inhibited binding. The smaller number of nitrobenzylthioinosine sites on nucleoside-permeable cells compared with human erythrocytes corresponded to a considerably lower Vmax. for uridine influx in these cells (0.53 X 10(-20) mol/cell per s at 25 degrees C compared with 254 X 10(-20) mol/cell per s). It is suggested that high-affinity nitrobenzylthioinosine binding represents a specific interaction with functional nucleoside-transport sites. The uridine-translocation capacity for each transport site at 25 degrees C is 180 molecules/site per s for both nucleoside-permeable sheep cells and human erythrocytes (assuming a 1:1 interaction between nitrobenzylthioinosine and the nucleoside-transport system).  相似文献   

17.
The human equilibrative nucleoside transporters hENT1 and hENT2 (each with 456 residues) are 40% identical in amino acid sequence and contain 11 putative transmembrane helices. Both transport purine and pyrimidine nucleosides and are distinguished functionally by a difference in sensitivity to inhibition by nanomolar concentrations of nitrobenzylmercaptopurine ribonucleoside (NBMPR), hENT1 being NBMPR-sensitive. Previously, we used heterologous expression in Xenopus oocytes to demonstrate that recombinant hENT2 and its rat ortholog rENT2 also transport purine and pyrimidine bases, h/rENT2 representing the first identified mammalian nucleobase transporter proteins (Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) J. Biol. Chem. 277, 24938-24948). The same study also revealed lower, but significant, transport of hypoxanthine by h/rENT1. In the present investigation, we have used the enhanced Xenopus oocyte expression vector pGEMHE to demonstrate that hENT1 additionally transports thymine and adenine and, to a lesser extent, uracil and guanine. Fluxes of hypoxanthine, thymine, and adenine by hENT1 were saturable and inhibited by NBMPR. Ratios of V(max) (pmol/oocyte · min(-1)):K(m) (mm), a measure of transport efficiency, were 86, 177, and 120 for hypoxantine, thymine, and adenine, respectively, compared with 265 for uridine. Hypoxanthine influx was competitively inhibited by uridine, indicating common or overlapping nucleobase and nucleoside permeant binding pockets, and the anticancer nucleobase drugs 5-fluorouracil and 6-mercaptopurine were also transported. Nucleobase transport activity was absent from an engineered cysteine-less version hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were mutated to serine. Site-directed mutagenesis identified Cys-414 in transmembrane helix 10 of hENT1 as the residue conferring nucleobase transport activity to the wild-type transporter.  相似文献   

18.
Two equilibrative (facilitated diffusion) nucleoside transport processes and a concentrative Na(+)-dependent co-transport process contribute to zero-trans inward fluxes of nucleosides in L1210 mouse leukemia cells. Na(+)-linked inward adenosine fluxes in L1210/AM cells (a clone deficient in adenosine, deoxyadenosine, and deoxycytidine kinase activities) were measured as initial rates of [3H]adenosine influx in medium containing Na+ salts and 10 microM dipyridamole. The Na(+)-linked transporter distinguished between the D- and L-enantiomers of adenosine, the latter being a virtual nonpermeant in the initial-rate assay. Adenine arabinoside, inosine, 2'-deoxyadenosine and 2'-deoxyadenosine derivatives with halogen atoms at the purine C-2 position were recognized as substrates of the Na(+)-linked system because of their inhibition of adenosine (10 microM) fluxes under the condition of Na(+)-dependence with IC50 values ranging between 25 and 183 microM; uridine, deoxycytidine, and cytosine arabinoside (each at 400 microM) inhibited adenosine fluxes by 10-40%. Inward Na(+)-linked adenosine fluxes were saturable with respect to extracellular adenosine and Na+ concentrations [( Na+]o); Km and Vmax values for adenosine influx were 9.4 +/- 2.6 microM and 1.67 +/- 0.2 pmol/microliter cell water/s when [Na+]o was 100 mM. The stoichiometry of Na+:adenosine co-transport, determined by Hill analysis of the dependence of adenosine fluxes on [Na+]o, was 1:1. The thiol-reactive agents, N-ethylmaleimide (NEM), showdomycin and p-chloromercuriphenylsulphonate (pCMPS), inhibited Na(+)-linked adenosine fluxes with IC50 values of 40, 10, and 2 microM, respectively. This inhibition was partially reversed by the presence of adenosine in incubation media containing pCMPS, but not NEM. Thiol groups accessible to pCMPS may be involved in substrate recognition by the transporter and in the permeation step.  相似文献   

19.
Purine uptake has been studied in many protozoan parasites in the last few years, and several of the purine transporters have been cloned. In contrast, very little is known about the salvage of preformed pyrimidines by protozoa, and no pyrimidine transporters have been cloned, yet chemotherapy based on pyrimidine nucleobases and nucleosides has been as effective as purine antimetabolites in the treatment of infectious and neoplastic disease. Here, we surveyed the presence of pyrimidine transporters in Trypanosoma brucei brucei. We could not detect any mediated uptake of thymine, thymidine or cytidine, but identified a very high-affinity transporter for cytosine, designated C1, with a K(m) value of 0.048+/-0.009 microM. We also confirmed the presence of the previously reported U1 uracil transporter and found it capable of mediating uridine uptake as well, with a K(m) of 33+/-5 microM. A higher-affinity U2 uridine transporter (K(m)=4.1+/-2.1 microM) was also identified, but efficiency of the C1 and U2-mediated transport was low. Pyrimidine antimetabolites were tested as potential trypanocidal agents and only 5-fluorouracil was found to be effective. This drug was efficiently taken up by bloodstream forms of T. b. brucei.  相似文献   

20.
Parameters of [3H]uridine binding to synaptic membranes isolated from rat brain cortex (K(D)=71+/-4 nM, B(max)=1.37+/-0.13 pmol/mg protein) were obtained. Pyrimidine and purine analogues displayed different rank order of potency in displacement of specifically bound [3H]uridine (uridine>5-F-uridine>5-Br-uridine approximately adenosine>5-ethyl-uridine approximately suramin>theophylline) and in the inhibition of [14C]uridine uptake (adenosine>uridine>5-Br-uridine approximately 5-F-uridine approximately 5-ethyl-uridine) into purified cerebrocortical synaptosomes. Furthermore, the effective ligand concentration for the inhibition of [14C]uridine uptake was about two order of magnitude higher than that for the displacement of specifically bound [3H]uridine. Adenosine evoked the transmembrane Na(+) ion influx, whereas uridine the transmembrane Ca(2+) ion influx much more effectively. Also, uridine was shown to increase free intracellular Ca(2+) ion levels in hippocampal slices by measuring Calcium-Green fluorescence. Uridine analogues were found to be ineffective in displacing radioligands that were bound to various glutamate and adenosine-recognition and modulatory-binding sites, however, increased [35S]GTPgammaS binding to membranes isolated from the rat cerebral cortex. These findings provide evidence for a rather specific, G-protein-coupled site of excitatory action for uridine in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号