首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stopped-flow techniques were utilized to investigate the kinetics of the reaction of lignin peroxidase compounds I and II (LiPI and LiPII) with veratryl alcohol (VA). All rate data were collected from single turnover experiments under pseudo first-order conditions. The reaction of LiPI with VA strictly obeys second-order kinetics over the pH range 2.72-5.25 as demonstrated by linear plots of the pseudo first-order rate constants versus concentrations of VA. The second-order rate constants are strongly dependent on pH and range from 2.62 x 10(6) M-1 s-1 (pH 2.72) to 1.45 x 10(4) M-1 s-1 (pH 5.25). The reaction of LiPII and VA exhibits saturation behavior when the observed pseudo first-order rate constants are plotted against VA concentrations. The saturation phenomenon is quantitatively explained by the formation of a 1:1 LiPII-substrate complex. Results of kinetic and rapid scan spectral analyses exclude the formation of a LiPII-VA cation radical complex. The first-order dissociation rate constant and the equilibrium dissociation constant for the LiPII reaction are also pH dependent. Binding of VA to LiPII is controlled by a heme-linked ionizable group of pKa approximately 4.2. The pH profiles of the second-order rate constants for the LiPI reaction and of the first-order dissociation constants for the LiPII reaction both demonstrate two pKa values at approximately 3.0 and approximately 4.2. Protonated oxidized enzyme intermediates are most active, suggesting that only electron transfer, not proton uptake from the reducing substrate, occurs at the enzyme active site. These results are consistent with the one-electron oxidation of VA to an aryl cation radical by LiPI and LiPII.  相似文献   

2.
The reactions of the fungal enzymes Arthromyces ramosus peroxidase (ARP) and Phanerochaete chrysosporium lignin peroxidase (LiP) with hydrogen peroxide (H(2)O(2)) have been studied. Both enzymes exhibited catalase activity with hyperbolic H(2)O(2) concentration dependence (K(m) approximately 8-10 mm, k(cat) approximately 1-3 s(-1)). The catalase and peroxidase activities of LiP were inhibited within 10 min and those of ARP in 1 h. The inactivation constants were calculated using two independent methods; LiP, k(i) approximately 19 x 10(-3) s(-1); ARP, k(i) approximately 1.6 x 10(-3) s(-1). Compound III (oxyperoxidase) was detected as the majority species after the addition of H(2)O(2) to LiP or ARP, and its formation was accompanied by loss of enzyme activity. A reaction scheme is presented which rationalizes the turnover and inactivation of LiP and ARP with H(2)O(2). A similar model is applicable to horseradish peroxidase. The scheme links catalase and compound III forming catalytic pathways and inactivation at the level of the [compound I.H(2)O(2)] complex. Inactivation does not occur from compound III. All peroxidases studied to date are sensitive to inactivation by H(2)O(2), and it is suggested that the model will be generally applicable to peroxidases of the plant, fungal, and prokaryotic superfamily.  相似文献   

3.
Lignin peroxidase compound III. Mechanism of formation and decomposition   总被引:9,自引:0,他引:9  
Lignin peroxidase compound III (LiPIII) was prepared via three procedures: (a) ferrous LiP + O2 (LiPIIIa), (b) ferric LiP + O2-. (LiPIIIb), and (c) LiP compound II + excess H2O2 followed by treatment with catalase (LiPIIIc). LiPIIIa, b, and c each have a Soret maximum at approximately 414 nm and visible bands at 543 and 578 nm. LiPIIIa, b, and c each slowly reverted to native ferric LiP, releasing stoichiometric amounts of O2-. in the process. Electronic absorption spectra of LiPIII reversion to the native enzyme displayed isosbestic points in the visible region at 470, 525, and 597 nm, suggesting a single-step reversion with no intermediates. The LiPIII reversion reactions obeyed first-order kinetics with rate constants of approximately 1.0 X 10(-3) s-1. In the presence of excess peroxide, at pH 3.0, native LiP, LiPII, and LiPIIIa, b, and c are all converted to a unique oxidized species (LiPIII*) with a spectrum displaying visible bands at 543 and 578 nm, but with a Soret maximum at 419 nm, red-shifted 5 nm from that of LiPIII. LiPIII* is bleached and inactivated in the presence of excess H2O2 via a biphasic process. The fast first phase of this bleaching reaction obeys second-order kinetics, with a rate constant of 1.7 X 10(1) M-1 s-1. Addition of veratryl alcohol to LiPIII* results in its rapid reversion to the native enzyme, via an apparent one-step reaction that obeys second-order kinetics with a rate constant of 3.5 X 10(1) M-1 s-1. Stoichiometric amounts of O2-. are released during this reaction. When this reaction was run under conditions that prevented further reactions, HPLC analysis of the products demonstrated that veratryl alcohol was not oxidized. These results suggest that the binding of veratryl alcohol to LiPIII* displaces O2-., thus returning the enzyme to its native state. In contrast, the addition of veratryl alcohol to LiPIII did not affect the rate of spontaneous reversion of LiPIII to the native enzyme.  相似文献   

4.
Previous studies on the chlorination reaction catalyzed by horseradish peroxidase using chlorite as the source of chlorine detected the formation of a chlorinating intermediate that was termed Compound X (Shahangian, S., and Hager, L.P. (1982) J. Biol. Chem. 257, 11529-11533). These studies indicated that at pH 10.7, the optical absorption spectrum of Compound X was similar to the spectrum of horseradish peroxidase Compound II. Compound X was shown to be quite stable at alkaline pH values. This study was undertaken to examine the relationship between the oxidation state of the iron protoporphyrin IX heme prosthetic group in Compound X and the chemistry of the halogenating intermediate. The experimental results show that the optical absorption properties and the oxidation state of the heme prosthetic group in horseradish peroxidase are not directly related to the presence of the activated chlorine atom in the intermediate. The oxyferryl porphyrin heme group in alkaline Compound X can be reduced to a ferric heme species that still retains the activated chlorine atom. Furthermore, the reaction of chlorite with horseradish peroxidase at acidic pH leads to the secondary formation of a green intermediate that has the spectral properties of horseradish peroxidase Compound I (Theorell, H. (1941) Enzymologia 10, 250-252). The green intermediate also retains the activated chlorine atom. By analogy to peroxidase Compound I chemistry, the heme prosthetic group in the green chlorinating intermediate must be an oxyferryl porphyrin pi-cation radical species (Roberts, J. E., Hoffman, B. M., Rutter, R. J., and Hager, L. P. (1981) J. Am. Chem. Soc. 103, 7654-7656). To be consistent with traditional peroxidase nomenclature, the red alkaline form of Compound X has been renamed Compound XII, and the green acidic form has been named Compound XI. The transfer of chlorine from the chlorinating intermediate to an acceptor molecule follows an electrophilic (rather than a free radical) path. A mechanism for the reaction is proposed in which the activated chlorine atom is bonded to a heteroatom on an active-site amino acid side chain. Transient state kinetic studies show that the initial intermediate, Compound XII, is formed in a very fast reaction. The second-order rate constant for the formation of Compound XII is approximately 1.1 x 10(7) M-1 s-1. The rate of formation of Compound XII is strongly pH-dependent. At pH 9, the second-order rate constant for the formation of Compound XII drops to 1.5 M-1 s-1. At acidic pH values, Compound XII undergoes a spontaneous first-order decay to yield Compound XI.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 from Phanerochaete chrysosporium and H2O2 was strongly inhibited by sodium azide. Inhibition was competitive with respect to veratryl alcohol (Ki = 1-2 microM) and uncompetitive with respect to H2O2. In contrast, sodium azide bound to the native enzyme at pH 6.0 with an apparent dissociation constant (KD) of 126 mM. Formation of azidyl radicals was detected by ESR spin trapping techniques. The enzymes is nearly completely inactivated in four turnovers. The H2O2-activated enzyme intermediate (compound I) reacted with sodium azide to form a new species rather than be reduced to the enzyme intermediate compound II. The new species has absorption maxima at 418, 540, and 570 nm, suggesting the formation of a ferrous-lignin peroxidase-NO complex. Confirmation of this assignment was obtained by low-temperature ESR spectroscopy. An identical complex could be simulated by the addition of nitrite to the reduced enzyme. The enzyme intermediate compound II is readily reduced by sodium azide to native enzyme with essentially no loss of activity.  相似文献   

6.
7.
Evidence for singlet oxygen formation has been obtained for the lactoperoxidase, H2O2 and bromide system by monitoring 2,3-diphenylfuran and diphenylisobenzofuran oxidation, O2 evolution, and chemiluminescence. This could provide an explanation for the cytotoxic and microbicidal activity of peroxidases and polymorphonuclear leukocytes. Evidence for singlet oxygen formation included the following. (a) Chemiluminescence accompanying the enzymic reaction was doubled in a deuterated buffer and inhibited by singlet oxygen traps. (b) The singlet oxygen traps, diphenylfuran and diphenylisobenzofuran, were oxidized to their known singlet oxygen oxidation products in the presence of lactoperoxidase, hydrogen peroxide and bromide. (c) The rate of oxidation of diphenylfuran and diphenylisobenzofuran was inhibited when monitored in the presence of known singlet oxygen traps or quenchers. (d) Oxygen evolution from the enzymic reaction was inhibited by singlet oxygen traps but not by singlet oxygen quenchers. (e) The traps or quenchers which were effective inhibitors in the experiments above did not inhibit peroxidase activity, were not competitive peroxidase substrates and did not react with the hypobromite intermediate since they did not inhibit hydrogen peroxide consumption by the enzyme. Using these criteria, various biological molecules were tested for their reactivity with singlet oxygen. Furthermore, by studying their effect on oxygen release by the enzymic reaction, it could be ascertained whether they were acting as singlet oxygen traps or quenchers.  相似文献   

8.
A convenient and efficient application of heterogeneous methylrhenium trioxide (MTO) systems for the selective oxidation of lignin model compounds and lignins is reported. Environmental friendly and low-cost H2O2 was used as the oxygen atom donor. Overall, the data presented and discussed in this paper point toward the conclusion that the immobilized heterogeneous catalytic systems based on H2O2/and MTO catalysts are able to extensively oxidize both phenolic and non-phenolic, monomeric, and dimeric, lignin model compounds. Condensed diphenylmethane models were found also extensively oxidized. Technical lignins, such as hydrolytic sugar cane lignin (SCL) and red spruce kraft lignin (RSL), displayed oxidative activity with immobilized MTO catalytic systems. After oxidation, these lignins displayed the formation of more soluble lignin fragments with a high degree of degradation as indicated by the lower contents of aliphatic and condensed OH groups, and the higher amounts of carboxylic acid moieties. Our data indicate that immobilized MTO catalytic systems are significant potential candidates for the development of alternative totally chlorine-free delignification processes and environmental sustainable lignin selective modification reactions.  相似文献   

9.
10.
11.
The formation of Compounds II and III of horseradish peroxidase from Compound I and potassium ferrocyanide and from Compound II and excess hydrogen peroxide, respectively, was studied as a function ofpH at 25°C and a constant ionic strength of 0.11. The yield of Compound II obtained increases progressively with increase inpH; a mixture of Compounds I and II is produced at acidicpH. Pure Compound III is obtained at allpH values, but the highest yield is obtained atpH values between 6.0 and 7.0. The yield of p-670, formed when Compound III is allowed to stand for 60 min, decreases with increase inpH, while the decay of Compound III also decreases with increase inpH. Therefore p-670 is the decay product of Compound III.  相似文献   

12.
The wood-degrading fungus Phanerochaete chrysosporium secretes a number of extracellular enzymes called lignin peroxidases which are involved in the degradation of both lignin and a number of persistent environmental pollutants. Lignin peroxidase isozyme H2, a glycosylated protein of approximately 40 kDa, contains a single heme. X-ray absorption spectroscopy (XAS) has been used to probe the local environment of the iron in the active site of resting enzyme, reduced enzyme, and compound III. For the native and reduced forms, respectively, the average Fe-pyrrole nitrogen distances are 2.055 and 2.02 A (+/- 0.015 A); the Fe-proximal nitrogen distance is 1.93 and 1.91 A (+/- 0.02 A) while the Fe-distal ligand distance is 2.17 and 2.10 A (+/- 0.03 A). Although the results are not as well-defined, the active-site structure of compound III is largely 2.02 +/- 0.015 A for the average Fe-pyrrole nitrogen distance, 1.90 +/- 0.02 for the Fe-proximal nitrogen, and 1.74 +/- 0.03 A for the Fe-distal ligand distance. The heme iron-pyrrole nitrogen distance is more expanded in ligninase H2 than in other peroxidases. The possible significance of this is discussed in relation to other heme proteins.  相似文献   

13.
14.
The radicals produced by X-irradiation at 77 K and at 300 K in cytosine monohydrate crystals have been analysed by electron-spin-resonance (e.s.r.) spectroscopy. Three radicals have been identified at 77 K: the anion radical and the cation radical of the cytosine molecule, together with the radical resutling from H-abstraction from the nitrogen N1. Irradiation at 300 K produces radicals resulting from H-adition at three different positions of the cytosine molecule. These are the C5-addition radical, the C6-addition radical, and the O2-addition radical. The results are compared with those found previously by other authors.  相似文献   

15.
One of the major problems of wild-type lignin peroxidase (LiP) is its inactivity at the presence of excess H(2)O(2) and high concentration of aromatic compounds. Little is known about the substrate-binding site of LiP, and functionality improvement of LiP was not actively tried by genetic engineering and directed evolution. In order to improve LiPs functionality, we performed directed evolution with a colorimetric screening method. Finally, three types of LiP mutants were screened. The catalytic efficiency of the variants toward 2,4-dichlorophenol (DCP) degradation activity and the stability against H(2)O(2) was increased over the wild type. The K(m) value of the variants toward H(2)O(2) was increased, but K(m) value toward 2,4-DCP degradation was reduced. Overall, The K(cat)/K(m) values of the mutants toward 2,4-DCP was increased ca. 4-fold, and that toward H(2)O(2) was increased ca. 89-fold. Amino acid sequence analysis indicated that the most of the mutations were located on the enzyme surface. We expect that these results coupled with recombining mutation can be successfully applied to the molecular evolution cycles for screening of LiPs and other oxidative enzymes with improved functionality and stability.  相似文献   

16.
Horseradish peroxidase displayed a ping-pong kinetic reaction mechanism with lignin model compounds and lignins. Oxidation of the α carbon on acetosyringone or acetovanillone failed above pH 6.5, while conversion of α-methylsyringyl (or guaiacyl) alcohol to acetosyringone (or vanillone) occurred optimally at pH 7.8. Small MW fragments were not formed from lignins at pH 6.4 and 7.8. These observations provide evidence for the growing concept that freely soluble peroxidase is not a lignolytic enzyme.  相似文献   

17.
Laccases of white-rot fungi Panus tigrinus, Phlebia radiata, and Phlebia tremellosa were isolated from cultures grown in liquid media which did not contain lignin and from the cultures grown on wheat straw. The physical and chemical properties of the laccases grown in submerged cultures were typical for blue fungal laccases. The laccases of the same fungi isolated from the solid-state cultures differed from the blue forms by lack of an absorption maximum at 610 nm. The typical blue laccases of P. tigrinus, Ph. radiata, and Ph. tremellosa acquired an ability to oxidize veratryl alcohol and a non-phenolic dimeric lignin model compound of beta-1-type only in the presence of a redox mediator, 2, 2'-azinobis(3-ethylbenzthiazolinesulfonic acid). The P. tigrinus and Ph. radiata yellow laccases catalyzed the oxidation of the same substrates without any mediator. The rate of the reaction of the blue laccases with a phenolic dimeric lignin model compound of beta-O-4-type was higher than that of the yellow laccases. The yellow laccases are apparently formed by the reaction of the blue laccases with low-molecular-weight lignin decomposition products.  相似文献   

18.
Ter-butyl hydroperoxide (TBH) induced microsomal lipid peroxidation has been measured by oxygen consumption and malonaldehyde (MDA) formation. It has been found that the singlet oxygen (1O2) trap 2,5 diphenylfuran depressed both oxygen consumption and MDA formation. In contrast, histidine, another 1O2 trap does not effect neither oxygen consumption, nor MDA production. On the other hand, β-carotene, a 1O2 quencher strongly depresses oxygen consumption but slightly affects MDA production. Such results are consistent with the generation of 1O2 as transient by product of peroxidative microsomal lipid decomposition.  相似文献   

19.
The formation of Compounds II and III of horseradish peroxidase from Compound I and potassium ferrocyanide and from Compound II and excess hydrogen peroxide, respectively, was studied as a function ofpH at 25°C and a constant ionic strength of 0.11. The yield of Compound II obtained increases progressively with increase inpH; a mixture of Compounds I and II is produced at acidicpH. Pure Compound III is obtained at allpH values, but the highest yield is obtained atpH values between 6.0 and 7.0. The yield of p-670, formed when Compound III is allowed to stand for 60 min, decreases with increase inpH, while the decay of Compound III also decreases with increase inpH. Therefore p-670 is the decay product of Compound III.  相似文献   

20.
The reaction of horse spleen ferritin (HoSF) with Fe2+ at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approximately 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe2+ was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H2O2 reactions were well defined from 15 to 40 degrees C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approximately 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 s(-1)) and H2O2 (0.67 s(-1)) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 microM. This low value and reported Fe2+/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated [Biochemistry 22 (1983) 876; Biochemistry 40 (2001) 10832].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号