首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人胚胎干细胞(human embryonic stem cells,hESCs)由囊胚期胚胎内细胞团分离培养获得,具有保持未分化状态的无限增殖能力。hESCs具有多向分化潜能,在体内和体外均可分化形成所有三个胚层(外胚层、中胚层、内胚层)的衍生物。hESCs一般在鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)饲养层上培养和扩增。为了优化培养条件,目前人们已发展了多种人类细胞饲养层和无饲养层、非条件培养基体系。hESCs可以在体外定向诱导分化为多种细胞类型,为揭示人胚早期发育机制和发展多种疾病的细胞移植治疗奠定了基础。hESCs可以在体外进行遗传修饰,将有助于揭示特定基因在发育过程中的调控和功能。对hESCs的深入研究将极大地推动医学和生命科学的进展,并将最终应用于临床,造福人类。  相似文献   

2.
In vitro neuronal differentiation of cultured human embryonic germ cells   总被引:8,自引:0,他引:8  
Human embryonic germ (hEG) cells, which have been advanced as one of the most important sources of pluripotent stem cells [the other one being human embryonic stem cells], can be propagated in vitro indefinitely in the primitive undifferentiated state while being capable of developing into all three germ layer derivatives, hence have become anticipated developing novel strategies of tissue regeneration and transplantation in the treatment of degenerative diseases. In the experiments here, we derived hEG cells from cultured human primordial germ cells (PGCs) of 6- to 9-week-post-fertilization embryos. They satisfied the criteria previously used to define hEG cells, including the expression of markers characteristic of pluripotent cells-abundant alkaline phosphatase (AP) activity, stage specific embryonic antigen (SSEA)-1(+), SSEA-3(-), SSEA-4(+), TRA-1-60(+), TRA-1-81(+), Oct-4(+), and hTERT(+), the retention of normal karyotypes, and possessing pluripotency by forming embryoid bodies (EBs) in vitro. Furthermore, these derived cells tended to neurally differentiate in vitro, especially under high-density culture conditions. We successfully isolated neural progenitor cells from differentiating hEG cultures and about 10% cells induced by 2microM all-trans-retinoic acid (RA) or 0.1mM dibutyryl cyclic AMP (dbcAMP)/1mM forskolin to mature neurons expressing microtubule-associated protein 2ab (MAP2ab), synaptophysin, beta-tubulin III, neuron-specific enolase (NSE), tyrosine hydroxylase (TH), but no glial fibrillary acid protein (GFAP) and choline acetyl transferase (ChAT). The data suggested that hEG cells may provide a potential source of cells for use in transplantation therapy for neurological degenerative diseases.  相似文献   

3.
4.
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.  相似文献   

5.
In this study, we selected gelatin as ECM (extracellular matrix) to support differentiation of mES (mouse embryonic stem) cells into TE (trophectoderm), as gelatin was less expensive and widely used. We found that 0.2% and 1.5% gelatin were the suitable concentrations to induce TE differentiation by means of detecting Cdx2 expression using real-time PCR. Moreover, about 15% cells were positive for Cdx2 staining after 6 days differentiation. We discovered that the expressions of specific markers for TE, such as Cdx2, Eomes, Hand1 and Esx1 were prominently increased after gelatin induction. Meanwhile, the expression of Oct4 was significantly decreased. We also found that inhibition of the BMP (bone morphogenetic protein) signalling by Noggin could promote mES cells differentiation into TE, whereas inhibition of the Wnt signalling by Dkk1 had the contrary effect. This could be used as a tool to study the differentiation and function of early trophoblasts as well as further elucidating the molecular mechanism during abnormal placental development.  相似文献   

6.
The establishment of efficient methods for promoting stem cell differentiation into target cells is important not only in regenerative medicine, but also in drug discovery. In addition to embryonic stem (ES) cells and various somatic stem cells, such as mesenchymal stem cells derived from bone marrow, adipose tissue, and umbilical cord blood, a novel dedifferentiation technology that allows the generation of induced pluripotent stem (iPS) cells has been recently developed. Although an increasing number of stem cell populations are being described, there remains a lack of protocols for driving the differentiation of these cells. Regeneration of organs from stem cells in vitro requires precise blueprints for each differentiation step. To date, studies using various model organisms, such as zebrafish, Xenopus laevis , and gene-targeted mice, have uncovered several factors that are critical for the development of organs. We have been using X. laevis , the African clawed frog, which has developmental patterns similar to those seen in humans. Moreover, Xenopus embryos are excellent research tools for the development of differentiation protocols, since they are available in high numbers and are sufficiently large and robust for culturing after simple microsurgery. In addition, Xenopus eggs are fertilized externally, and all stages of the embryo are easily accessible, making it relatively easy to study the functions of individual gene products during organogenesis using microinjection into embryonic cells. In the present review, we provide examples of methods for in vitro organ formation that use undifferentiated Xenopus cells. We also describe the application of amphibian differentiation protocols to mammalian stem cells, so as to facilitate the development of efficient methodologies for in vitro differentiation.  相似文献   

7.
8.
9.
Previous studies in several laboratories have demonstrated inadvertent chromosomal abnormalities in long-term cultured human embryonic stem cells (HESC). Here, using a two-step selection process we report a functional adaptation of a HESC line, HS181, towards a decreased dependence of extra cellular matrix (ECM) for in vitro survival, that is for growth directly onto a plastic surface. Successful adaptation was paralleled with a karyotype change in 100% of the cells to 47,XX,del(7)(q11.2),+i(12)(p10). The resulting adapted population showed increased survival and growth on plastic and also maintained expression of HESC markers, but showed a decreased pluripotency, as demonstrated by results from embryoid body (EB) formation in vitro. The finding of reduced pluripotency may not be totally unexpected since the variant cells were selected for self-renewal and proliferation, not differentiation during the adaptation to growth on plastic. In the light of recent models of a germ cell origin of HESC it is of particular interest that similar to many of the reported spontaneous HESC mutants, one of the identified specific chromosome abnormalities, i(12p), has also been strongly implicated for human germ cell cancer. However, the mutated HESC variant carrying this mutation failed to grow as a xeno-graft in a mouse model in vivo. This is surprising and needs a further mechanistic analysis for its explanation. Increased knowledge of genetic integrity of HESC may have significance on the understanding of mechanisms for tumor progression and thus strategy for treatments, particularly for tumors occurring in early life.  相似文献   

10.
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.  相似文献   

11.
12.
13.
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.  相似文献   

14.
15.
Bone marrow-derived mesenchymal stem cells (BMMSCs) from the patients suffering from age-related osteoporosis were found to have numerous degeneration, such as decreased growth rate, impaired capacity of differentiating into local tissue, and repressed telomerase activity. However, it is not clear whether post-menopausal osteoporotic bone is either subject to such decline in cellular function. In the present study, bone marrow cells were harvested from ovariectomized (OVX) and Sham rats and cultured in vitro at 3 months post-surgery. MTT assay indicated that the proliferation potential of OVXBMMSCs was always higher than that of ShamBMMSCs, no matter cultured in basic, osteoblastic or adipogenic medium. Alkaline phosphatase activity assay, Alizarin red S staining, Oil red O staining and real-time RT-PCR analysis further demonstrated that bilateral ovariectomization positively influenced the osteoblastic and adipogenic differentiation potential of BMMSCs, this action may be partly mediated through up-regulation of osteoblastic special markers core binding factor a1, collagen type I and low-density lipoprotein receptor-related protein 5, as well as adipogenic special markers peroxisome proliferators activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte lipid-binding protein 2. These results may hold great promise for using post-menopausal osteoporotic bone as an attractive autologous marrow source for tissue engineering and cell-based therapies.  相似文献   

16.
17.
In vitro osteogenic differentiation of human ES cells   总被引:1,自引:0,他引:1  
Since their isolation in 1998, human embryonic stem (hES) cells have been shown to be capable of adopting various cell fates in vitro. Here, we present in vitro data demonstrating the directed commitment of human embryonic stem cells to the osteogenic lineage. Human ES cells are shown to respond to factors that promote osteogenesis, leading to activation of the osteogenic markers osteocalcin, parathyroid hormone receptor, bone sialoprotein, osteopontin, cbfa1, and collagen 1. Moreover, the mineralized nodules obtained are composed of hydroxyapatite, further establishing the similarity of osteoblasts in culture to bone. These results show that osteoblasts can be derived from human ES cultures in vitro and provide the basis for comparison of adult and embryonic-derived osteogenesis, and for an investigation of potential applications for hES cells in orthopaedic tissue repair.  相似文献   

18.
19.
Graphene has drawn attention as a substrate for stem cell culture and has been reported to stimulate the differentiation of multipotent adult stem cells. Here, we report that graphene enhances the cardiomyogenic differentiation of human embryonic stem cells (hESCs) at least in part, due to nanoroughness of graphene. Large-area graphene on glass coverslips was prepared via the chemical vapor deposition method. The coating of the graphene with vitronectin (VN) was required to ensure high viability of the hESCs cultured on the graphene. hESCs were cultured on either VN-coated glass (glass group) or VN-coated graphene (graphene group) for 21 days. The cells were also cultured on glass coated with Matrigel (Matrigel group), which is a substrate used in conventional, directed cardiomyogenic differentiation systems. The culture of hESCs on graphene promoted the expression of genes involved in the stepwise differentiation into mesodermal and endodermal lineage cells and subsequently cardiomyogenic differentiation compared with the culture on glass or Matrigel. In addition, the culture on graphene enhanced the gene expression of cardiac-specific extracellular matrices. Culture on graphene may provide a new platform for the development of stem cell therapies for ischemic heart diseases by enhancing the cardiomyogenic differentiation of hESCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号