首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Voluntary muscle activation varies with age and muscle group.   总被引:3,自引:0,他引:3  
The consistency and the number of attempts required to achieve maximal voluntary muscle activation have not been documented and compared between young and old adults. Furthermore, few studies have contrasted activation between functional pairs of muscle groups, and no study has tested upper limb muscles. The purpose of this study was to measure and compare voluntary muscle activation of the elbow flexors and extensors in young and old men over two separate test sessions. With the method of twitch interpolation to measure activation, six young (24 +/- 1 yr) and six old (83 +/- 4 yr) men performed five maximal voluntary contractions (MVC) during each session for each muscle group. Elbow flexion and extension MVC was less (43 and 47%, respectively) in the old men, yet the best maximal voluntary muscle activation was similar between age groups. However, when all 10 attempts at MVC were compared, the mean activation scores were slightly less (approximately 5%) in the elbow extensors but were approximately 11% less (P < 0.001) in the elbow flexors of old men, compared with young men. During the second session, there was a significant improvement of 13% (P < 0.005) in mean elbow flexor activation in the old men. There were no session differences for either muscle group for the young men. The results indicate that, for aged men, elbow flexor maximal activation is achieved less frequently compared with elbow extensors, and thus mean activation for elbow flexors is less than for elbow extensors. However, if sufficient attempts are provided, the best effort for the old men is not different from that of the young men for either muscle group.  相似文献   

2.
3.
We examined the effects of ischemia (ISC) alone and with low-intensity exercise (ISC+EX) on growth hormone (GH) and muscle function responses. Nine men (22 +/- 0.7 yr) completed 3 study days: an ISC day (thigh cuff inflated five times, 5 min on, 3 min off), an ISC+EX day [knee extension at 20% maximal voluntary contraction (MVC) with ISC], and a control day. MVCs and submaximal contraction tasks (15 and 30% MVC) were performed before and following the perturbations. Surface electromyogram signals were collected from thigh muscles and analyzed for median frequency and root mean square alterations. Blood samples were collected every 10 min (190 min total) and analyzed for GH concentrations. Peak GH concentrations and GH area under the curve were highest (P < 0.01) on the ISC+EX day (7.5 microg/l and 432 microg.l(-1).min(-1), respectively) compared with the ISC (0.9 microg/l and 76.4 microg.l(-1).min(-1)), and CON (1.1 microg/l and 83.8 microg.l(-1).min(-1)) days. A greater GH pulse amplitude, mass/pulse, and production rate were also observed on the ISC+EX day (P < 0.05). Following the intervention, force production decreased on the ISC and ISC+EX days by 16.1 and 55.8%, respectively, and did not return to baseline values within 5 min of recovery. During the submaximal contractions, median frequency shifted to lower frequencies for most of the muscles examined, and root mean square electromyogram was consistently elevated for ISC+EX day. In conclusion, ISC coupled with resistance exercise acutely increases GH levels and reduces MVC, whereas ISC alone decreases force capacity, without alterations in GH levels.  相似文献   

4.
To demonstrate the most satisfactory way of using electrical activities of respiratory nerves and muscles, activities of phrenic nerve and external intercostal muscle (ICM) and the airway pressure changes generated by respiratory muscle contraction were recorded in anesthetized cats during complete airway occlusion. Electrical activities were rectified, integrated and processed in terms of peak and average inspiratory rates per 0.1 s and of total activity per breath. Peak rate of phrenic nerve activity exhibited a high linear correlation (r = 0.974) with peak inspiratory pressure. Average phrenic rate showed a similar high correlation (r = 0.973). Peak rate of external ICM was linearly related to peak pressure but the correlation was less good (r = 0.915). Total phrenic activity per breath was too dependent upon inspiratory duration to be a satisfactory correlate (r = 0.674). In this experiment occlusion pressure was an index of muscle force generation and respiratory control system output. It is concluded that peak or average rates of phrenic activity provide an electrical index of output changes. On theoretical grounds, peak rate is probably better.  相似文献   

5.
Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636-H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 +/- 2 and 16 +/- 3 mmHg (P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% (P < 0.05) and 200% (P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.  相似文献   

6.
7.
8.
Analysis of the protein composition of human urine by high-resolution two-dimensional electrophoresis showed that several features are associated with neuromuscular diseases, the best defined being the appearance in the urine of a small amount of a protein that migrates on the electropherogram as a characteristic spot (spot C). This spot consists of a protein of apparent molecular weight 26 000 and isoelectric point 5.3. The spot was usually present in the urine of patients suffering from diseases in which the musculature was directly affected but was rarely found in other patients and normal subjects. The protein responsible for spot C appears to be an index of muscle damage caused by a number of conditions. Attempts are being made to isolate enough of the protein to permit its identification.  相似文献   

9.
10.
11.
12.
13.
14.
The cellular K content of frog ventricular strips is monitored using 42K. Cellular K loss evoked by cardiac glycosides or a low extracellular K concentration is accompanied by a more than proportional decrease in the conductance of the resting membrane and the rate of rapid repolarization of the action potential. Voltage clamp experiments relate these changes to a decrease in the magnitude of an inward-rectifying K current. Current-voltage relations measured before and after changing the extracellular K concentration cross each other. This violation of the independence principle has previously suggested that extracellular K ions are required to open the rectifier channel (Cleemann and Morad. 1979. J. Physiol. 286: 113). Decreasing the cellular K content decreases the outward membrane current at all membrane potentials by an amount that is consistent with the independence principle. This suggests that the gating process is not sensitive to intracellular K ions. These findings are consistent with a previously published model for inward-going rectification.  相似文献   

15.
When an electric field is applied along the fiber axis, the intensities of all observable optical diffraction lines of skeletal muscle fibers increase. This electro-optical effect was extensively studied and it was confirmed that the effect is due to the interaction between electric dipole moments of thin filaments and the applied field. From the present study on the intensity modulation due to applied field in sinusoidal and square forms, we confirmed that (1) the thin filament is a semiflexible rod, (2) the second order mode of the bending motion of thin filaments contributes to the electro-optical effect of muscle fibers at higher frequencies of a sinusodidal field or shorter durations of a square field, (3) the induced moment has no appreciable effect, and (4) the estimated value of the flexural rigidity of thin filaments strongly depends on the concentrations of free calcium ions in the myofibrillar space.  相似文献   

16.
Experimental studies relating to the direct peripheral vascular actions of neurohypophyseal hormones and their synthetic variants are reviewed. In addition, the available data on the comparative pharmacologic actions of these peptides on mammalian vascular smooth muscle are reviewed. Experiments relating to mechanisms by which neurohypophyseal peptides induce contraction of blood vessels are discussed. Neurohypophyseal peptide hormones appear to be able to contract and relax vascular smooth muscle, the exact type of response being dependent on species, vascular bed, and region within a vascular bed. Receptors that subserve both contraction and relaxation may exist on different blood vessels within a species, with a preponderance of receptors that subserve contraction being present in most blood vessels. Concentrations of vasopressin that can be considered physiologic (i.e., 10(-13) to 10(-11) M) are capable of evoking responses on a variety of microscopic as well as large blood vessels. Arginine-vasopressin appears to be, relatively, the most potent contractile substance on rat blood vessels investigated to date; angiotensin is not. Preservative-free oxytocin is a contractile agent on all mammalian arterial and arteriolar vessels so far investigated. A great deal of the controversy surrounding the exact vascular actions elicited by these peptide hormones can be attributed to many factors that were not controlled in older experiments. Moreover, rat pressor assays cannot be utilized to determine structure-activity relationship for neurohypophyseal peptides on vascular smooth muscles. Nuerohypophyseal peptide-induced contractions of vascular smooth muscles can be markedly affected by sex, sex hormones, alcohols, [Ca2+]0, [mg2+]0, oxygen deficit, and glucose-deprivation. Extracellular sodium and potassium ions appear to play relatively little role in vasopressin-induced contractions of rat arterial smooth muscle. The terminal amino group, phenolic hydroxyl, aromatic ring and basicity in positions 1, 2, 3, and 8, respectively, of the neurohypophyseal hormones are important for optimizing hormone-receptor affinity and intrinsic contractile activity on vascular smooth muscle. Basicity in position 8 of these peptide hormones is not an absolute requirement for contractile activation of these smooth muscles. Alterations in molecular structure can result in neurohypophyseal peptides with unique, and selective, microcirculatory effects that may be beneficial in the treatment of low-flow states.  相似文献   

17.
18.
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost.  相似文献   

19.
1. Guanylate cyclase of every fraction studied showed an absolute requirement for Mn2+ ions for optimal activity; with Mg2+ or Ca2+ reaction was barely detectable. Triton X-100 stimulated the particulate enzyme much more than the supernatant enzyme and solubilized the particulate-enzyme activity. 2. Substantial amounts of guanylate cyclase were recovered with the washed particulate fractions of cardiac muscle (63-98%), skeletal muscle (77-93%), cerebral cortex (62-88%) and liver (60-75%) of various species. The supernatants of these tissues contained 7-38% of total activities. In frog heart, the bulk of guanylate cyclase was present in the supernatant fluid. 3. Plasma-membrane fractions contained 26, 21, 22 and 40% respectively of the total homogenate guanylate cyclase activities present in skeletal muscle (rabbit), cardiac muscle (guinea pig), liver (rat) and cerebral cortex (rat). In each case, the specific activity of this enzyme in plasma membranes showed a five- to ten-fold enrichment when compared with homogenate specific activity. 4. These results suggest that guanylate cyclase, like adenylate cyclase, and ouabain-sensitive Na+ + K+-dependent ATPase (adenosine triphosphatase), is associated with the surface membranes of cardiac muscle, skeletal muscle, liver and cerebral cortex; however, considerable activities are also present in the supernatant fractions of these tissues which contain very little adenylate cyclase or ouabain-sensitive Na+ + K+-dependent ATPase activities.  相似文献   

20.
Chicken muscle and fibroblast actin structure.   总被引:2,自引:2,他引:0       下载免费PDF全文
Double labelling and the isolation of peptides specific to muscle actin indicates that completely homologous 20-residue peptides can be produced from the C-terminal regions of muscle and chicken-embryo fibroblast actins by treatment with CNBr. By quantification of the amount of this peptide that can be produced from acetone-dried powders by CNBr treatment, 6.8% of the protein of the fibroblasts has been estimated to be actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号