首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic low dose exposure to organophosphorus poisons (OP) results in cognitive impairment. Studies in rats have shown that OP interfere with microtubule polymerization. Since microtubules are required for transport of nutrients from the nerve cell body to the nerve synapse, it has been suggested that disruption of microtubule function could explain the learning and memory deficits associated with OP exposure. Tubulin is a major constituent of microtubules. We tested the hypothesis that OP bind to tubulin by treating purified bovine tubulin with sarin, soman, chlorpyrifos oxon, diisopropylfluorophosphate, and 10-fluoroethoxyphosphinyl-N-biotinamidopentyldecanamide (FP-biotin). Tryptic peptides were isolated and analyzed by mass spectrometry. It was found that OP bound to tyrosine 83 of alpha tubulin in peptide TGTYR, tyrosine 59 in beta tubulin peptide YVPR, tyrosine 281 in beta tubulin peptide GSQQYR, and tyrosine 159 in beta tubulin peptide EEYPDR. The OP reactive tyrosines are located either near the GTP binding site or within loops that interact laterally with protofilaments. It is concluded that OP bind covalently to tubulin, and that this binding could explain cognitive impairment associated with OP exposure.  相似文献   

2.
Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5 mm p-nitrophenyl acetate for 5 min to 2 weeks, or with 10 mm p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mm p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mm p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with beta-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 degrees C was 61 +/- 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.  相似文献   

3.
Organophosphate (OP) esters bind covalently to the active site serine of enzymes in the serine hydrolase family. Recently, mass spectrometry identified covalent binding of OPs to tyrosine in a wide variety of proteins when purified proteins were incubated with OPs. In the current work, manual inspection of tandem mass spectrometry (MS/MS) data led to the realization that lysines also make a covalent bond with OPs. OP-labeled lysine residues were found in seven proteins that had been treated with either chlorpyrifos oxon (CPO) or diisopropylfluorophosphate (DFP): human serum albumin (K212, K414, K199, and K351), human keratin 1 (K211 and K355), human keratin 10 (K163), bovine tubulin alpha (K60, K336, K163, K394, and K401), bovine tubulin beta (K58), bovine actin (K113, K291, K326, K315, and K328), and mouse transferrin (K296 and K626). These results suggest that OP binding to lysine is a general phenomenon. Characteristic fragments specific for CPO-labeled lysine appeared at 237.1, 220.0, 192.0, 163.9, 128.9, and 83.9 amu. Characteristic fragments specific for DFP-labeled lysine appeared at 164.0, 181.2, and 83.8 amu. This new OP-binding motif to lysine suggests new directions to search for mechanisms of long-term effects of OP exposure and in the search for biomarkers of OP exposure.  相似文献   

4.
Organophosphorus (OP) esters are known to bind covalently to the active site serine of enzymes in the serine hydrolase family. It was a surprise to find that proteins with no active site serine are also covalently modified by OP. The binding site in albumin, transferrin, and tubulin was identified as tyrosine. The goal of the present work was to determine whether binding to tyrosine is a general phenomenon. Fourteen proteins were treated with a biotin-tagged organophosphorus agent called FP-biotin. The proteins were digested with trypsin and the labeled peptides enriched by binding to monomeric avidin. Peptides were purified by HPLC and fragmented by collision induced dissociation in a tandem ion trap mass spectrometer. Eight proteins were labeled and six were not. Tyrosine was labeled in human alpha-2-glycoprotein 1 zinc-binding protein (Tyr 138, Tyr 174 and Tyr 181), human kinesin 3C motor domain (Tyr 145), human keratin 1 (Tyr 230), bovine actin (Tyr 55 and Tyr 200), murine ATP synthase beta (Tyr 431), murine adenine nucleotide translocase 1 (Tyr 81), bovine chymotrypsinogen (Tyr 201) and porcine pepsin (Tyr 310). Only 1–3 tyrosines per protein were modified, suggesting that the reactive tyrosine was activated by nearby residues that facilitated ionization of the hydroxyl group of tyrosine. These results suggest that OP binding to tyrosine is a general phenomenon. It is concluded that organophosphorus-reactive proteins include not only enzymes in the serine hydrolase family, but also proteins that have no active site serine. The recognition of a new OP-binding motif to tyrosine suggests new directions to search for mechanisms of long-term effects of OP exposure. Another application is in the search for biomarkers of organophosphorus agent exposure. Previous searches have been limited to serine hydrolases. Now proteins such as albumin and keratin can be considered.  相似文献   

5.
Aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate, an additive in engine lubricants and hydraulic fluids that is activated to the toxic 2-(ortho-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP). Currently, there is no laboratory evidence to support intoxication of airline crew members by CBDP. Our goal was to develop methods for testing in vivo exposure by identifying and characterizing biomarkers. Mass spectrometry was used to study the reaction of CBDP with human albumin, free tyrosine, and human butyrylcholinesterase. Human albumin made a covalent bond with CBDP, adding a mass of 170 amu to Tyr411 to yield the o-cresyl phosphotyrosine derivative. Human butyrylcholinesterase made a covalent bond with CBDP on Ser198 to yield five adducts with added masses of 80, 108, 156, 170, and 186 amu. The most abundant adduct had an added mass of 80 amu from phosphate (HPO3), a surprising result given that no pesticide or nerve agent is known to yield phosphorylated serine with an added mass of 80 amu. The next most abundant adduct had an added mass of 170 amu to form o-cresyl phosphoserine. It is concluded that toxic gases or oil mists in cabin air may form adducts on plasma butyrylcholinesterase and albumin, detectable by mass spectrometry.  相似文献   

6.
Hexahydrophthalic anhydride (HHPA) is a highly sensitizing industrial chemical that is known to covalently bind to endogenous proteins. The aim of this study was to determine the binding sites of HHPA to human serum albumin (HSA). Conjugates between HSA and HHPA, at two different molar ratios, were synthesized under physiological conditions. The conjugates were digested with trypsin and Pronase E to obtain specific peptides and amino acids, which were separated by liquid chromatography (LC). Fractions containing modified peptides were detected through quantification of hydrolysable HHPA using LC coupled to a triple quadrupole mass spectrometer with electrospray ionization. Modified residues in albumin were identified by sequence analyses using nanoelectrospray quadrupole time-of-flight mass spectrometry. A total of 36 HHPA adducts were found in the HSA-HHPA conjugate with 10 times molar excess of added HHPA. In the conjugate with a molar ratio of 1:0.1 of added HHPA, seven HHPA adducts were found bound to Lys137 (domain IB), Lys190, Lys199 and Lys212 (domain IIA), Lys351 (domain IIB), and Lys432 and Lys436 (domain IIIA). Moreover, several of these adducted albumin peptides were detected in nasal lavage fluid from one volunteer exposed to HHPA. The binding sites of HHPA to HSA have been determined, thus identifying potential allergenic chemical structures. This knowledge generates the possibility of developing methods for the biological monitoring of HHPA exposure by analysing tryptic peptides including these binding sites.  相似文献   

7.
Butyrylcholinesterase in human plasma and acetylcholinesterase in human red blood cells have aryl acylamidase activity toward o-nitroacetanilide, hydrolyzing the amide bond to produce o-nitroaniline and acetate. People with a genetic variant of butyrylcholinesterase that had no detectable activity with butyrylthiocholine, nevertheless had aryl acylamidase activity in their plasma. To determine the source of this aryl acylamidase activity we tested fatty acid free human albumin for activity. We found that albumin had aryl acylacylamidase activity and that this activity was inhibited by diisopropylfluorophosphate. Since the esterase activity of albumin is also inhibited by diisopropylfluorophosphate, and since it is known that diisopropylfluorophosphate covalently binds to Tyr 411 of human albumin, we conclude that the active site for aryl acylamidase activity of albumin is Tyr 411. Albumin accounts for about 10% of the aryl acylamidase activity in human plasma.  相似文献   

8.
Hexahydrophthalic anhydride (HHPA) is a highly sensitizing industrial chemical that is known to covalently bind to endogenous proteins. The aim of this study was to determine the binding sites of HHPA to human serum albumin (HSA). Conjugates between HSA and HHPA, at two different molar ratios, were synthesized under physiological conditions. The conjugates were digested with trypsin and Pronase E to obtain specific peptides and amino acids, which were separated by liquid chromatography (LC). Fractions containing modified peptides were detected through quantification of hydrolysable HHPA using LC coupled to a triple quadrupole mass spectrometer with electrospray ionization. Modified residues in albumin were identified by sequence analyses using nanoelectrospray quadrupole time-of-flight mass spectrometry. A total of 36 HHPA adducts were found in the HSA–HHPA conjugate with 10 times molar excess of added HHPA. In the conjugate with a molar ratio of 1:0.1 of added HHPA, seven HHPA adducts were found bound to Lys137 (domain IB), Lys190, Lys199 and Lys212 (domain IIA), Lys351 (domain IIB), and Lys432 and Lys436 (domain IIIA). Moreover, several of these adducted albumin peptides were detected in nasal lavage fluid from one volunteer exposed to HHPA. The binding sites of HHPA to HSA have been determined, thus identifying potential allergenic chemical structures. This knowledge generates the possibility of developing methods for the biological monitoring of HHPA exposure by analysing tryptic peptides including these binding sites.  相似文献   

9.
In mammals, serum paraoxonase (PON1) is tightly associated with high-density lipoprotein (HDL) particles. In human populations, PON1 exhibits a substrate dependent activity polymorphism determined by an Arg/Gln (R/Q) substitution at amino acid residue 192. The physiological role of this protein appears to be involvement in the metabolism of oxidized lipids. Several studies have suggested that the PON1R192 allele may be a risk factor in coronary artery disease. PON1 also plays an important role in the metabolism of organophosphates including insecticides and nerve agents. The PON1R192 isoform hydrolyzes paraoxon rapidly, but diazoxon, soman and sarin slowly compared with the PON1Q192 isoform. Both PON1 isoforms hydrolyze phenylacetate at approximately the same rate, while PON1R192 hydrolyzes chlorpyrifos oxon slightly faster than PONQ192. Animal model studies involving injection of purified rabbit PON1 into mice clearly demonstrated the ability of PON1 to protect cholinesterases from inhibition by OP compounds. The consequence of having low PON1 levels has been addressed with toxicology studies in PON1 knockout mice. These mice showed dramatically increased sensitivity to chlorpyrifos oxon, diazoxon and some increased sensitivity to the respective parent compounds. These observations are consistent with earlier studies that showed a good correlation between high rates of OP hydrolysis by serum PON1 and resistance to specific OP compounds. They are also consistent with the observations that newborns have an increased sensitivity to OP toxicity, due in part to their not expressing adult PON1 levels for weeks to months after birth, depending on the species. Together, these studies point out the importance of considering the genetic variability of PON1192 isoforms and levels as well as the developmental time course of PON1 appearance in serum in developing risk assessment models  相似文献   

10.
Rapid monitoring and retrospective verification are key issues in protection against and non-proliferation of chemical warfare agents (CWA). Such monitoring and verification are adequately accomplished by the analysis of persistent protein adducts of these agents. Liquid chromatography-mass spectrometry (LC-MS) is the tool of choice in the analysis of such protein adducts, but the overall experimental procedure is quite elaborate. Therefore, an automated on-line pepsin digestion-LC-MS configuration has been developed for the rapid determination of CWA protein adducts. The utility of this configuration is demonstrated by the analysis of specific adducts of sarin and sulfur mustard to human butyryl cholinesterase and human serum albumin, respectively.  相似文献   

11.
Detoxication of organophosphorus (OP) compounds is affected by genetic and environmental modulation of a number of enzymes involved in the process. For organophosphorothioate insecticides, different P450 isozymes and variants carry out two reactions that have quite different consequences; (1) they bioactivate their parent compounds to highly toxic oxon forms that are many times more toxic than the parent compounds, and (2) concurrently, they dearylate the parent OP compounds, generating much less toxic metabolites. The ratios at which these different P450s carry out bioactivation versus dearylation differ among the P450 isozymes. The detoxication of the oxon forms of diazinon and chlorpyrifos is achieved by hydrolysis to the respective aromatic alcohols and diethyl phosphates primarily by paraoxonase 1 (PON1), a plasma enzyme tightly associated with high-density lipoprotein particles and also found in liver. Stoichiometric binding to other targets also contributes to the detoxication of these oxons. PON1 is polymorphically distributed in human populations with an amino acid substitution (Gln/Arg) at position 192 of this 354-amino acid protein (the initiator Met residue is cleaved on maturation) that determines the catalytic efficiency of hydrolysis of some substrates. In addition to the variable catalytic efficiency determined by the position 192 amino acid, protein levels of PON1 vary by as much as 15-fold among individuals with the same PON1(192) genotype (Q/Q; Q/R; R/R). The generation of PON1 null mice and transgenic mice, expressing each of the human PON1(192) alloforms in place of mouse PON1, has allowed for the examination of the physiological function of the PON1(192) alloforms in OP detoxication. Sensitivity to diazoxon exposure is primarily determined by the plasma level of PON1, whereas for chlorpyrifos oxon exposure, both the plasma PON1 level and the position 192 amino acid are important--PON1(R192) is more efficient in inactivating chlorpyrifos oxon than is PON1(Q192). The availability of PON1 null mice provides an opportunity to examine the contribution of other enzymes in the OP detoxication pathways without PON1 interference.  相似文献   

12.
An off-line mass spectrometry method that combines immuno-spin trapping and chromatographic procedures has been developed for selective detection of the nitrone spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) covalently attached to proteins, an attachment which occurs only subsequent to DMPO trapping of free radicals. In this technique, the protein-DMPO nitrone adducts are digested to peptides with proteolytic agents, peptides from the enzymatic digest are separated by HPLC, and enzyme-linked immunosorbent assays (ELISA) using polyclonal anti-DMPO nitrone antiserum are used to detect the eluted HPLC fractions that contain DMPO nitrone adducts. The fractions showing positive ELISA signals are then concentrated and characterized by tandem mass spectrometry (MS/MS). This method, which constitutes the first liquid chromatography-ELISA-mass spectrometry (LC-ELISA-MS)-based strategy for selective identification of DMPO-trapped protein residues in complex peptide mixtures, facilitates location and preparative fractionation of DMPO nitrone adducts for further structural characterization. The strategy is demonstrated for human hemoglobin, horse heart myoglobin, and sperm whale myoglobin, three globin proteins known to form DMPO-trappable protein radicals on treatment with H(2)O(2). The results demonstrate the power of the new experimental strategy to select DMPO-labeled peptides and identify sites of DMPO covalent attachments.  相似文献   

13.
We have identified organophosphorus agent (OP)-tyrosine adducts on 12 different proteins labeled with six different OP. Labeling was achieved by treating pure proteins with up to 40-fold molar excess of OP at pH 8–8.6. OP-treated proteins were digested with trypsin, and peptides were separated by HPLC. Fragmentation patterns for 100 OP-peptides labeled on tyrosine were determined in the mass spectrometer. The goals of the present work were (1) to determine the common features of the OP-reactive tyrosines, and (2) to describe non-sequence MSMS fragments characteristic of OP-tyrosine peptides. Characteristic ions at 272 and 244 amu for tyrosine-OP immonium ions were nearly always present in the MSMS spectrum of peptides labeled on tyrosine by chlorpyrifos-oxon. Characteristic fragments also appeared from the parent ions that had been labeled with diisopropylfluorophosphate (216 amu), sarin (214 amu), soman (214 amu) or FP-biotin (227, 312, 329, 691 and 708 amu). In contrast to OP-reactive serines, which lie in the consensus sequence GXSXG, the OP-reactive tyrosines have no consensus sequence. Their common feature is the presence of nearby positively charged residues that activate the phenolic hydroxyl group. The significance of these findings is the recognition of a new binding motif for OP to proteins that have no active site serine. Modified peptides are difficult to find when the OP bears no radiolabel and no tag. The characteristic MSMS fragment ions are valuable because they are identifiers for OP-tyrosine, independent of the peptide.  相似文献   

14.
Myeloperoxidase is released from stimulated polymorphonuclear leukocytes at inflammatory loci. Besides its bactericidal activity, it interacts with human serum albumin that is essential for the endothelial uptake of myeloperoxidase and its contribution in regulation of the blood vessel tonus. Here, we investigated which kinds of modification dominate in the albumin protein by the myeloperoxidase-hydrogen peroxide system at physiological pH. In the presence of chloride, bromide, and nitrite, the myeloperoxidase-hydrogen peroxide system caused an oxidation, bromination, and nitrosylation/nitration of eight amino acid residues of albumin as detected by fragment analysis of tryptic digests with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. An oxygen was incorporated into the methionines Met147, Met353, and Met572 as well as into the tryptophan Trp238. In the case of methionine residues, this oxygen was derived from the water phase as shown using 18O-enriched water. Nitrosylation/nitration was observed at the tryptophan Trp238 and the tyrosines Tyr162, Tyr425, and Tyr476 according to the mass shift of 29 Da and 45 Da. The incorporation of one or two bromines was found into the tyrosines Tyr425 and Tyr476. We did not observe any chlorination of albumin fragments. Thus, myeloperoxidase modifies in multiple ways amino acid residues in human serum albumin.  相似文献   

15.
Several phage isolates that bind specifically to human serum albumin (HSA) were isolated from disulfide-constrained cyclic peptide phage-display libraries. The majority of corresponding synthetic peptides bind with micromolar affinity to HSA in low salt at pH 6.2, as determined by fluorescence anisotropy. One of the highest affinity peptides, DX-236, also bound well to several mammalian serum albumins (SA). Immobilized DX-236 quantitatively captures HSA from human serum; mild conditions (100 mM Tris, pH 9.1) allow release of HSA. The DX-236 affinity column bound HSA from human serum with a greater specificity than does Cibacron Blue agarose beads. In addition to its likely utility in HSA and other mammalian SA purifications, this peptide media may be useful in the proteomics and medical research markets for selective removal of mammalian albumin from serum prior to mass spectrometric and other analyses.  相似文献   

16.
We have evaluated the potential of plasma albumin to provide a sensitive biomarker of exposure to commonly used organophosphorus pesticides in order to complement the widely used measure of acetylcholinesterase (AChE) inhibition. Rat or human plasma albumin binding by tritiated-diisopropylfluorophosphate ((3)H-DFP) was quantified by retention of albumin on glass microfibre filters. Preincubation with unlabelled pesticide in vitro or dosing of F344 rats with pesticide in vivo resulted in a reduction in subsequent albumin radiolabelling with (3)H-DFP, the decrease in which was used to quantify pesticide binding. At pesticide exposures producing approximately 30% inhibition of AChE, rat plasma albumin binding in vitro by azamethiphos (oxon), chlorfenvinphos (oxon), chlorpyrifos-oxon, diazinon-oxon and malaoxon was reduced from controls by 9+/-1%, 67+/-2%, 56+/-2%, 54+/-2% and 8+/-1%, respectively. After 1 h of incubation with 19 microM (3)H-DFP alone, the level of binding to rat or human plasma albumins reached 0.011 or 0.039 moles of DFP per mole of albumin, respectively. This level of binding could be further increased by raising the concentration of (3)H-DFP, increasing the (3)H-DFP incubation time, or by substitution of commercial albumins for native albumin. Pesticide binding to albumin was presumed covalent since it survived 24 h dialysis. After dosing rats with pirimiphos-methyl (dimethoxy) or chlorfenvinphos (oxon) (diethoxy) pesticides, the resultant albumin binding were still significant 7 days after dosing. As in vitro, dosing of rats with malathion did not result in significant albumin binding in vivo. Our results suggest albumin may be a useful additional biomonitor for moderately low-level exposures to several widely used pesticides, and that this binding differs markedly between pesticides.  相似文献   

17.
Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid binding.  相似文献   

18.
A generic method for the detection of covalent adducts to the cysteine-34 residue of human serum albumin (HSA) has been developed, based on an on-line combination of immunoaffinity chromatography for selective sample pre-treatment, solution phase digestion, liquid chromatography and tandem mass spectrometry. Selective anti-HSA antibodies immobilized on agarose were used for sample pre-concentration and purification of albumin from the chemically produced alkylated HSA. After elution, HSA and HSA adducts are mixed with pronase and directed to a reaction capillary kept at a digestion temperature of 70 degrees C. The digestion products were trapped on-line on a C18 SPE cartridge. The peptides were separated on a reversed-phase column using a gradient of organic modifier and subsequently detected using tandem mass spectrometry. Modified albumin samples consisted of synthetically alkylated HSA by the reactive metabolite of acetaminophen, N-acetyl-p-benzoquinoneimine (NAPQI), and using the alkylating agent 1-chloro-2,4-dinitrobenzene (CDNB) as reference. The resulting mixture of alkylated versus non-modified albumin has been applied to the on-line system, and alkylation of HSA is revealed by the detection of the modified marker tetra-peptide glutamine-cysteine-proline-phenylalanine (QCPF) adducts NAPQI-QCPF and CDNB-QCPF. Detection of alkylated species was enabled by the use of data comparison algorithms to distinguish between unmodified and modified HSA samples. The in-solution digestion proved to be a useful tool for enabling fast (less than 2 min) and reproducible on-line digestion of HSA. A detection limit of 1.5 micromol/L of modified HSA could be obtained by applying 10 microL of NAPQI-HSA sample.  相似文献   

19.
A method is described for profiling putative adducts (or other unknown covalent modifications) at the Cys34 locus of human serum albumin (HSA), which represents the preferred reaction site for small electrophilic species in human serum. By comparing profiles of putative HSA-Cys34 adducts across populations of interest it is theoretically possible to explore environmental causes of degenerative diseases and cancer caused by both exogenous and endogenous chemicals. We report a novel application of selected-reaction-monitoring (SRM) mass spectrometry, termed fixed-step SRM (FS-SRM), that allows detection of essentially all HSA-Cys34 modifications over a specified range of mass increases (added masses). After tryptic digestion, HSA-Cys34 adducts are contained in the third largest peptide (T3), which contains 21 amino acids and an average mass of 2433.87 Da. The FS-SRM method does not require that exact masses of T3 adducts be known in advance but rather uses a theoretical list of T3-adduct m/z values separated by a fixed increment of 1.5. In terms of added masses, each triply charged parent ion represents a bin of ±2.3 Da between 9.1 Da and 351.1 Da. Synthetic T3 adducts were used to optimize FS-SRM and to establish screening rules based upon selected b- and y-series fragment ions. An isotopically labeled T3 adduct is added to protein digests to facilitate quantification of putative adducts. We used FS-SRM to generate putative adduct profiles from six archived specimens of HSA that had been pooled by gender, race, and smoking status. An average of 66 putative adduct hits (out of a possible 77) were detected in these samples. Putative adducts covered a wide range of concentrations, were most abundant in the mass range below 100 Da, and were more abundant in smokers than in nonsmokers. With minor modifications, the FS-SRM methodology can be applied to other nucleophilic sites and proteins.  相似文献   

20.
Acetaldehyde, the immediate oxidation product of ethanol metabolism, was assessed for its ability to bind covalently to a purified protein in solution. Bovine serum albumin (BSA)2 was used as the model protein incubated in the presence of 0.2 mm [14C]acetaldehyde at pH 7.4 and at 37 °C. Acetaldehyde formed both stable and unstable adducts with serum albumin. Unstable adducts were identified following stabilization with the reducing agent sodium borohydride. We examined both types of binding using trichloroacetic acid precipitation, gel filtration, and dialysis as means to separate bound from free acetaldehyde. All three methods of analysis gave comparable results except that the number of stable acetaldehyde adducts with albumin were significantly lower following separation by dialysis. The effects of l-cysteine, l-lysine, and reduced glutathione were assessed for their abilities as competitive reagents to decrease binding of [14C]acetaldehyde to BSA. Addition of cysteine caused a rather dramatic concentration-dependent reduction in [14C]acetaldehyde binding to BSA when compared to that caused by lysine which displayed a relatively mild effect on covalent binding. The presence of glutathione caused a concentration-dependent decrease in protein-bound radioactivity that was stronger than that by lysine but not as effective as cysteine. The ability of each reagent to reverse the formation of preformed acetaldehyde adducts with BSA was also examined. Only l-cysteine effectively decreased the number of unstable acetaldehyde adducts with BSA while stable binding of acetaldehyde remained essentially unaffected by any of the three reagents. These results indicate that acetaldehyde can covalently bind to protein and form unstable as well as stable adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号