首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seventy integral membrane proteins from the Mycobacterium tuberculosis genome have been cloned and expressed in Escherichia coli. A combination of T7 promoter-based vectors with hexa-His affinity tags and BL21 E. coli strains with additional tRNA genes to supplement sparsely used E. coli codons have been most successful. The expressed proteins have a wide range of molecular weights and number of transmembrane helices. Expression of these proteins has been observed in the membrane and insoluble fraction of E. coli cell lysates and, in some cases, in the soluble fraction. The highest expression levels in the membrane fraction were restricted to a narrow range of molecular weights and relatively few transmembrane helices. In contrast, overexpression in insoluble aggregates was distributed over a broad range of molecular weights and number of transmembrane helices.  相似文献   

2.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.  相似文献   

3.
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia coli based membrane protein expression and purification. A ligation-independent cloning (LIC)-based vector encoding a C-terminal green fluorescence protein (GFP) tag was used for cloning in a high throughput mode. The GFP tag facilitated expression screening in E. coli through both cell culture fluorescence measurements and in-gel fluorescence imaging. Positive candidates from the GFP screening were subsequently sub-cloned into a LIC-based, GFP free vector for further expression and purification. The expressed, C-terminal His-tagged membrane proteins were purified via membrane enrichment and Ni-affinity chromatography. Thermofluor technique was applied to screen optimal buffers and detergents for the purified membrane proteins. This pipeline has been successfully tested for membrane proteins from E. coli and can be potentially expanded to other prokaryotes.  相似文献   

4.
Little is known about the quality control of proteins upon integration in the inner membrane of Escherichia coli. Here, we demonstrate that YidC and FtsH are adjacent to a nascent, truncated membrane protein using in vitro photo cross-linking. YidC plays a critical but poorly understood role in the biogenesis of E. coli inner membrane proteins (IMPs). FtsH functions as a membrane chaperone and protease. Furthermore, we show that FtsH and its modulator proteins HflK and HflC copurify with tagged YidC and, vice versa, that YidC copurifies with tagged FtsH. These results suggest that FtsH and YidC have a linked role in the quality control of IMPs.  相似文献   

5.
Despite recent successes in the structure determination of eukaryotic membrane proteins, the total number of structures of these important proteins is severely underrepresented in the Protein Data Bank. Although prokaryotic homologues provide valuable mechanistic insight, they often lack crucial details, such as post-translational modification and additional intra or extracellular domains that are important for understanding the function and regulation of these proteins in eukaryotic cells. The production of milligram quantities of recombinant protein is still a serious obstacle to the structural and functional characterization of these proteins. Here, we report a modification to a previously described over expression system using the simple eukaryote Saccharomyces cerevisiae that can increase overall protein yield and improve downstream purification procedures. Using a metabolic marker under the control of a truncated promoter, we show that expression levels for several membrane transporters are increased fourfold. We further demonstrate that the increase in expression for our test proteins resulted in a concomitant increase in functional protein. Using this system, we were able to increase the expression level of a plant transporter, NRT1.1, which was a key factor in its structural and functional characterization.  相似文献   

6.
The large number of uncharacterized genes emerging from genome sequencing projects has resulted in a need for quick and reliable screening methods for protein expression parameters. We have utilized the univector plasmid recombination system (as previously reported) to develop a series of vectors for rapid screening for expression in Escherichia coli. A high level of recombinant protein expression is a requirement for purification of protein for structural determination and other purposes. In other applications, successful complementation of a missing enzyme activity in E. coli, as well as directed evolution studies and metabolic engineering, often require a much lower level of protein expression. In this report we describe the construction of a number of new pHOST vectors that can be screened for both low- and high-level expression. We isolated a mutant vector for MBP fusions that exhibited a more optimal level of expression for complementation of aerobic respiration in hemA(-) E. coli, our functional assay for the alternative oxidase. We then demonstrated the use of our system to rapidly screen for both optimal functional expression and optimal overexpression of the alternative oxidase as well as two other members of a family of membrane-bound diiron carboxylate proteins, the plastid terminal oxidase and 5-demethoxyquinone hydroxylase.  相似文献   

7.
The pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa translocates ferric-pyoverdine across the outer membrane via an energy consuming mechanism that involves the inner membrane energy transducing complex of TonB-ExbB-ExbD and the proton motive force. We solved the crystal structure of FpvA loaded with iron-free pyoverdine at 3.6 angstroms resolution. The pyoverdine receptor is folded in two domains: a transmembrane 22-stranded beta-barrel domain occluded by an N-terminal domain containing a mixed four-stranded beta-sheet (the plug). The beta-strands of the barrel are connected by long extracellular loops and short periplasmic turns. The iron-free pyoverdine is bound at the surface of the receptor in a pocket lined with aromatic residues while the extracellular loops do not completely cover the pyoverdine binding site. The TonB box, which is involved in intermolecular contacts with the TonB protein of the inner membrane, is observed in an extended conformation. Comparison of this first reported structure of an iron-siderophore transporter from a bacterium other than Escherichia coli with the known structures of the E.coli TonB-dependent transporters reveals a high structural homology and suggests that a common sensing mechanism exists for the iron-loading status in all bacterial iron siderophore transporters.  相似文献   

8.
Reconstituted cell-free (CF) protein expression systems hold the promise of overcoming the traditional barriers associated with in vivo systems. This is particularly true for membrane proteins, which are often cytotoxic and due to the nature of the membrane, difficult to work with. To evaluate the potential of cell-free expression, we cloned 120 membrane proteins from E. coli and compared their expression profiles in both an E. coli in vivo system and an E. coli-derived cell-free system. Our results indicate CF is a more robust system and we were able to express 63% of the targets in CF, compared to 44% in vivo. To benchmark the quality of CF produced protein, five target membrane proteins were purified and their homogeneity assayed by gel filtration chromatography. Finally, to demonstrate the ease of amino acid labeling with CF, a novel membrane protein was substituted with selenomethionine, purified, and shown to have 100% incorporation of the unnatural amino acid. We conclude that CF is a novel, robust expression system capable of expressing more proteins than an in vivo system and suitable for production of membrane proteins at the milligram level.  相似文献   

9.
Abstract The outer membrane protein BtuB of Escherichia coli K-12 is the receptor for vitamin B12; it is normally present in approx. 200 copies per cell. We describe here the conditions by which BtuB was readily observed in electropherograms of outer membrane preparations. These conditions are as follows. (1) Incorporation of 8 M urea in sodium dodecyl sulfate-polyacrylamide gel systems improved detection of the polypeptide. (2) In most E. coli K-12 strains examined, BtuB was most abundant when cells were grown at 27°C. This thermoregulation of BtuB was independent of envZ and envY , two regulatory genes for outer membrane proteins.  相似文献   

10.
A directed evolutionary approach is described that searches short, random peptide sequences for appendage at the secretory signal peptide-mature protein junction to seek ideal algorithms for both efficient and hyper export of recombinant proteins to the periplasm of Escherichia coli. The strategy employs simple, visual detection of positive clones using a PINK expression system that faithfully reports on export status of a mammalian hemoprotein in E. coli. With-in "sequence spaces" ranging from 1 to 13 residues, a significant but highly variable secretory fitness was scored such that the rate of secretion reciprocally correlated with the membrane-associated precursor pool of the evolved exportable hemoproteins. Three clusters of hyper, median, and hypo exporters were isolated. These had corresponding net charges of -1, 0, and +1 within the evolved sequence space, which in turn clearly correlated with the prevailing magnitude and polarity of the membrane energization states. The findings suggest that both the nature of the charged residue and the proximal sequence in the early mature region are the crucial determinants of the protonophore-dependent electrophoretic discharge of the precursor across the inner membrane of E. coli. We conclude that the directed evolutionary approach will find ready application in engineering recombinant proteins for their efficient secretion via the sec export pathway in E. coli.  相似文献   

11.
In cytoplasmic male sterility (CMS), original mitochondrial genes contribute to sex determinism by provoking pollen abortion. The function of the encoded proteins remains unclear. We studied the ORF138 protein, responsible for the 'Ogura' CMS, which is both used in hybrid seed production and present in natural populations. We analyzed the biochemical and structural properties of this protein in male-sterile plants and in E. coli. We showed that this protein spontaneously forms dimers in vitro. Truncated variants of the protein, containing either the hydrophobic or the hydrophilic moiety, also spontaneously dimerize. By fractionating mitochondria, we showed that ORF138 was strongly associated with the inner mitochondrial membrane of male-sterile plants. Our results also strongly suggest that ORF138 forms oligomers in male-sterile plant mitochondria. In E. coli, ORF138 was associated with the plasma membrane, as shown by membrane fractionation, and formed oligomers. The production of this protein strongly inhibited bacterial growth, but not by inhibiting respiration. The observed toxic effects required both the hydrophilic and hydrophobic moieties of the protein.  相似文献   

12.
13.
旨在构建植原体免疫主导膜蛋白Imp基因原核表达载体,并进行初步表达。以重组克隆质粒pMD18-T-Imp为模板,PCR扩增Imp基因片段。构建表达载体pET-28a(+)-Imp,转化宿主菌E.coliBL21(DE3)。筛选阳性克隆,提取重组质粒作PCR鉴定、酶切鉴定及IPTG诱导表达鉴定。PCR及双酶切结果显示,重组质粒pET-28a(+)-Imp构建成功。经IPTG诱导BL21(pET-28a(+)-Imp)表达约20 kD的蛋白,与预期的携带6×His-Tag的目的蛋白(19.5 kD)大小相符,主要以包涵体形式存在。结果显示,构建的表达载体pET-28a(+)-Imp在E.coliBL21(DE3)中能够达一定量表达,为进一步纯化Imp蛋白奠定基础。  相似文献   

14.
The efficiency of Helicobacter pylori as a mucosal pathogen is caused by unique soluble and integral membrane proteins, which allow its survival at acidic pH and successful colonization of the gastric environment. With about one-fourth of the H. pylori's proteome comprising integral membrane proteins, the need for solution of their three-dimensional (3D) structures becomes persistent as it can potentially drive the generation of more effective drugs. This study presents a medium-throughput approach for cloning and expression screening of integral membrane proteins from H. pylori (26695) using Escherichia coli as the expression host. One-hundred sixteen H. pylori targets were cloned into two different vector systems and heterologously expressed in E. coli. Eighty-four percent of these proteins displayed medium to high expression. No clear-cut correlation was found between expression levels and number of putative transmembrane spans, predicted functionality, and molecular mass. Nonetheless, expression of transporters and hypothetical proteins < or =40 kDa with two to four transmembrane spans displayed generally high expression levels. To statistically strengthen the quality of the data from the medium-throughput approach, a comparison with data derived from robotic-based methodologies was conducted. Optimization of expression and solubilization conditions for selected targets was also performed. Seventeen targets have been purified and subjected to crystallization so far. Eighteen percent of these targets (2/17) produced crystals under specific sets of crystallization conditions.  相似文献   

15.
S Ramadhani  SR Mousavi  M Talebi 《Gene》2012,498(2):177-182
We cloned a gene, kexD, that provides a multidrug-resistant phenotype from multidrug-resistant Klebsiella pneumoniae MGH78578. The deduced amino acid sequence of KexD is similar to that of the inner membrane protein, RND-type multidrug efflux pump. Introduction of the kexD gene into Escherichia coli KAM32 resulted in a MIC that was higher for erythromycin, novobiocin, rhodamine 6G, tetraphenylphosphonium chloride, and ethidium bromide than that of the control. Intracellular ethidium bromide levels in E. coli cells carrying the kexD gene were lower than that in the control cells under energized conditions, suggesting that KexD is a component of an energy-dependent efflux pump. RND-type pumps typically consist of three components: an inner membrane protein, a periplasmic protein, and an outer membrane protein. We discovered that KexD functions with a periplasmic protein, AcrA, from E. coli and K. pneumoniae, but not with the periplasmic proteins KexA and KexG from K. pneumoniae. KexD was able to utilize either TolC of E. coli or KocC of K. pneumoniae as an outer membrane component. kexD mRNA was not detected in K. pneumoniae MGH78578 or ATCC10031. We isolated erythromycin-resistant mutants from K. pneumoniae ATCC10031, and some showed a multidrug-resistant phenotype similar to the drug resistance pattern of KexD. Two strains of multidrug-resistant mutants were investigated for kexD expression; kexD mRNA levels were increased in these strains. We conclude that changing kexD expression can contribute to the occurrence of multidrug-resistant K. pneumoniae.  相似文献   

16.
To promote viral entry, replication, release, and spread to neighboring cells, many cytolytic animal viruses encode proteins responsible for modification of host cell membrane permeability and for formation of ion channels in host cell membranes during their life cycles. In this study, we show that the envelope (E) protein of severe acute respiratory syndrome-associated coronavirus can induce membrane permeability changes when expressed in Escherichia coli. E protein expressed in bacterial and mammalian cells under reducing conditions existed as monomers, but formed homodimer and homotrimer under non-reducing conditions. Site-directed mutagenesis studies revealed that two cysteine residues of the E protein were essential for oligomerization, leading to induction of membrane permeability. This is the first report demonstrating that a coronavirus-encoded protein could modify membrane permeability in E. coli cells.  相似文献   

17.
The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded beta-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 A. The structure shows a 14-stranded beta-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ( approximately 13 A) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin alpha-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.  相似文献   

18.
The overexpression of G protein-coupled receptors (GPCRs) and of many other heterologous membrane proteins in simple microbial hosts, such as the bacterium Escherichia coli, often results in protein mistargeting, aggregation into inclusion bodies or cytoplasmic degradation. Furthermore, membrane protein production is very frequently accompanied by severe cell toxicity. In this work, we have employed a genetic strategy to isolate E. coli mutants that produce markedly increased amounts of the human central cannabinoid receptor (CB1), a pharmacologically significant GPCR that expresses very poorly in wild-type E. coli. By utilizing a CB1 fusion with the green fluorescent protein (GFP) and fluorescence-activated cell sorting (FACS), we screened an E. coli transposon library and identified an insertion in dnaJ that resulted in a large increase in CB1-GFP fluorescence and a dramatic enhancement in bacterial production of membrane-integrated CB1. Furthermore, the dnaJ::Tn5 inactivation suppressed the severe cytotoxicity associated with CB1 production. This revealed an unexpected inhibitory role of the chaperone/ co-chaperone DnaJ in the protein folding or membrane insertion of bacterially produced CB1. Our strategy can be easily adapted to identify expression bottlenecks for different GPCRs or any other integral membrane protein, provide useful and unanticipated mechanistic insights, and assist in the construction of genetically engineered E. coli strains for efficient heterologous membrane protein production.  相似文献   

19.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypo-osmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle (SRP) for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon. Mutants affected in the Sec-components are competent for MscL assembly. Translocation of the periplasmic domain was detected using a membrane-impermeant, sulfhydryl-specific gel-shift reagent. The modification of a single cysteine residue at position 68 indicated its translocation across the inner membrane. From these in vivo experiments, it is concluded that the electrical chemical membrane potential is not necessary for membrane insertion of MscL. However, depletion of the membrane insertase YidC inhibits translocation of the protein across the membrane. We show here that YidC is essential for efficient membrane insertion of the MscL protein. YidC is a component of a recently identified membrane insertion pathway that is evolutionarily conserved in bacteria, mitochondria and chloroplasts.  相似文献   

20.
Abstract: As a tool for determining the topology of the small, 91-amino acid ΦX174 lysis protein E within the envelope complex of Escherichia coli , a lysis active fusion of protein E with streptavidin (E-FXa-StrpA) was used. The E-FXa-StrpA fusion protein was visualised using immune electron microscopy with gold-conjugated anti-streptavidin antibodies within the envelope complex in different orientations. At the distinct areas of lysis characteristic for protein E, the C-terminal end of the fusion protein was detected at the surface of the outer membrane, whereas at other areas the C-terminal portion of the protein was located at the cytoplasmic side of the inner membrane. These results suggest that a conformational change of protein E is necessary to induce the lysis process, an assumption supported by proteinase K protection studies. The immune electron microscopic data and the proteinase K accessibility studies of the E-FXa-StrA fusion protein were used for the working model of the E-mediated lysis divided into three phases: phase 1 is characterised by integration of protein E into the inner membrane without a cytoplasmic status in a conformation with its C-terminal part facing the cytoplasmic side; phase 2 is characterised by a conformational change of the protein transferring the C-terminus across the inner membrane; phase 3 is characterised by a fusion of the inner and outer membranes and is associated with a transfer of the C-terminal domain of protein E towards the surface of the outer membrane of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号